Факторная матрица. Подготовка данных. Факторный анализ. Дисперсионный анализ факторов

Представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы. Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных. Дополнительным способом проверки числа выделенных факторов является вычисление корреляционной матрицы, которая близка исходной, если факторы выделены правильно. Эта матрица называется воспроизведенной корреляционной матрицей. Для того чтобы увидеть, как эта матрица отклоняется от исходной корреляционной матрицы (с которой начинался анализ), можно вычислить разность между ними. Остаточная матрица может указать на "несогласие", т. е. на то, что рассматриваемые коэффициенты корреляции не могут быть получены с достаточной точностью на основе имеющихся факторов. В методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения. Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.


Надо отметить, что четких статистических критериев полноты факторизации не существует. Тем не менее, низкие ее значения, например меньше 0,7, свидетельствуют о желательности сокращения количества признаков или увеличения количества факторов.

Мет Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору.

Матрица, состоящая из факторных нагрузок и имеющая число столбцов, равное числу общих факторов, и число строк, равное числу исходных признаков, называется факторной матрицей.

Основой для вычисления факторной матрицы является матрица парных коэффициентов корреляции исходных признаков.

Корреляционная матрица фиксирует степень взаимосвязи между каждой парой признаков. Аналогично факторная матрица фиксирует степень линейной связи каждого признака с каждым общим фактором.

Величина факторной нагрузки не превышает по модулю единицы, а знак ее говорит о положительной или отрицательной связи признака с фактором.

Чем больше абсолютная величина факторной нагрузки признака по некоторому фактору, тем в большей степени этот фактор определяет данный признак.

Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Факторная модель дает возможность вычислять вклады факторов в общую дисперсию всех признаков. Суммируя квадраты факторных нагрузок для каждого фактора по всем признакам, получаем его вклад в общую дисперсию системы признаков: чем выше доля этого вклада, тем более значимым, существенным является данный фактор.

При этом можно выявить и оптимальное количество общих факторов, достаточно хорошо описывающих систему исходных признаков.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору.

Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором.

Факторные веса могут быть как положительными, так и отрицательными.

В силу того, что факторы являются стандартизованными величинами со средним значением, равным нулю, факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. ч то она ниже средней.

Практически, если число уже найденных главных компонент (или факторов) не больше, чем m /2, объясняемая ими дисперсия не менее 70%, а следующая компонента дает вклад в суммарную дисперсию не более 5%, факторная модель считается достаточно хорошей.

Если Вы хотите найти значения факторов и сохранить их в виде дополнительных переменных задействуйте выключатель Scores... (Значения) Факторное значение, как правило, лежит в пределах -3 до +3.

Факторный анализ - более мощный и сложный аппарат, чем метод главных

компонент, поэтому он применяется в том случае, если результаты

компонентного анализа не вполне устраивают. Но поскольку эти два метода

решают одинаковые задачи, необходимо сравнить результаты компонентного и


факторного анализов, т. е. матрицы нагрузок, а также уравнения регрессии на

главные компоненты и общие факторы, прокомментировать сходство и различия

результатов.

Максимально возможное количество факторов m при заданном числе признаков р определяется неравенством

(р+m)<(р-m)2,

В завершение всей процедуры факторного анализа с помощью математических преобразований выражают факторы fj через исходные признаки, то есть получают в явном виде параметры линейной диагностической модели.

Методы главных компонент и факторного анализа представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы1 . Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных.

Общее выражение для j -го фактора может быть записано так:

где Fj (j изменяется от 1 до k ) - это общие факторы, Ui - характерный, Aij - константы, используемые в линейной комбинации k факторов. Характерные факторы могут не коррелировать друг с другом и с общими факторами.

Процедуры факторно-аналитической обработки, применяемые к полученным данным, различны, но структура (алгоритм) анализа состоит из одних и тех же основных этапов: 1. Подготовка исходной матрицы данных. 2. Вычисление матрицы взаимосвязей признаков. 3. Факторизация (при этом необходимо указать количество факторов, выделяемых в ходе факторного решения, и метод вычисления). На этом этапе (как и на следующем) можно также оценить, насколько хорошо полученное факторное решение сближает исходные данные. 4. Вращение - преобразование факторов, облегчающее их интерпретацию. 5. Подсчет факторных значений по каждому фактору для каждого наблюдения. 6. Интерпретация данных .

изобретение факторного анализа было связано именно с необходимостью одновременного анализа большого количества коэффициентов корреляции различных шкал между собой. Одна из проблем, связанных с методами главных компонент и факторного анализа заключается в том, что критериев, которые позволяли бы проверить правильность найденного решения, не существует. Например, при регрессионном анализе можно сопоставить показатели по зависимым переменным, полученные эмпирическим путем, с показателями, вычисленными теоретически на основе предлагаемой модели, и использовать корреляцию между ними как критерий правильности решения по схеме корреляционного анализа для двух наборов переменных. В дискриминантном анализе правильность решения базируется на том, насколько точно предсказана принадлежность испытуемых к тем или иным классам (если сравнивать с реальной принадлежностью, имеющей место в жизни). К сожалению, в методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения, Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.

Третья проблема заключается в том, что факторный анализ довольно часто применяют с целью спасти плохо продуманное исследование, когда становится ясно, что ни одна статистическая процедура не дает желаемого результата. Мощь методов главных компонент и факторного анализа позволяет из хаотичной информации выстроить упорядоченную концепцию (что и создает им сомнительную репутацию).

Вторая группа терминов относится к матрицам, которые строятся и интерпретируются как часть решения. Поворот факторов - это процесс поиска наиболее легко интерпретируемого решения для данного количества факторов. Существуют два основных класса поворотов: ортогональный и косоугольный . В первом случае все факторы априорно выбираются ортогональными (не коррелирующими друг с другом) и строится матрица факторных нагрузок , представляющая собой матрицу взаимосвязей между наблюдаемыми переменными и факторами. Величина нагрузок отражает степень связи каждой наблюдаемой переменной и каждым фактором и интерпретируется как коэффициент корреляции между наблюдаемой переменной и фактором (латентной переменной), а потому изменяется в пределах от -1 до 1. Решение, полученное после ортогонального поворота, интерпретируется на основе анализа матрицы факторных нагрузок путем выявления того, с каким из факторов в максимальной степени связана та или иная наблюдаемая переменная. Таким образом, каждый фактор оказывается заданным группой первичных переменных, имеющих по нему наибольшие факторные нагрузки.

Если выполняется косоугольное вращение (т. е. априорно допускается возможность корреляции факторов между собой), то строится еще несколько дополнительных матриц. Матрица факторной корреляции содержит корреляции между факторами. Матрица факторных нагрузок , упомянутая выше, расщепляется на две: структурную матрицу взаимосвязей между факторами и переменными и матрицу факторного отображения , выражающую линейные взаимосвязи между каждой наблюдаемой переменной и каждым фактором (без учета влияния наложения одних факторов на другие, выражаемого корреляцией факторов между собой). После косоугольного вращения интерпретация факторов происходит на основе группировки первичных переменных (подобно тому, как было описано выше), но уже с использованием в первую очередь матрицы факторного отображения.

Наконец, для обоих поворотов вычисляется матрица коэффициентов факторных значений , используемая в специальных уравнениях регрессионного типа для вычисления факторных значений (факторных баллов, показателей по факторам) для каждого наблюдения на основе значений для них первичных переменных.

Сравнивая методы главных компонент и факторного анализа, отметим следующее. В ходе выполнения анализа по методу главных компонент строится модель для наилучшего объяснения (максимального воспроизведения) полной дисперсии экспериментальных данных, полученных по всем переменным. В результате выделяются «компоненты». При факторном анализе предполагается, что каждая переменная объясняется (детерминируется) некоторым количеством гипотетических общих факторов (влияющих на все переменные) и характерными факторами (для каждой переменной своими). И вычислительные процедуры выполняются таким образом, чтобы освободиться как от дисперсии, полученной в результате ошибки измерения, так и от дисперсии, объясняемой специфичными факторами, и анализировать только дисперсии, объясняемые гипотетически существующими общими факторами. В результате получаются объекты, называемые факторами. Однако, как уже упоминалось, с содержательно-психологической точки зрения эта разница в математических моделях существенного значения не имеет, поэтому в дальнейшем, если не дается особых пояснений, о каком именно случае идет речь, мы будем использовать термин «фактор» как по отношению к компонентам, так и по отношению к факторам.

Размеры выборки и пропущенные данные. Чем больше выборка, тем больше достоверность показателей взаимосвязи. Поэтому очень важно иметь достаточно большую выборку. Требуемый размер выборки также зависит от степени взаимосвязи показателей в популяции в целом и количества факторов: при сильной и достоверной взаимосвязи и небольшом количестве четко очерченных факторов будет достаточно и не очень большой выборки.

Так, выборка, размер которой 50 испытуемых, оценивается как очень плохая, 100 - плохая, 200 - средняя, 300 - хорошая, 500 - очень хорошая и 1000 - превосходная (Comrey, Lee , 1992). Исходя из этих соображений, в качестве общего принципа можно порекомендовать исследовать выборки не менее 300 испытуемых. Для решения, базирующегося на достаточном количестве маркерных переменных с высокими факторными нагрузками (>0.80) достаточно выборки порядка 150 испытуемых (Guadagnoli, Velicer , 1988). нормальность для каждой переменной в отдельности проверяется по асимметрии (насколько кривая изучаемого распределения сдвинута вправо или влево по сравнению с теоретически нормальной кривой) и эксцессу (степень вытянутости вверх или прогнутости вниз «колокола» имеющегося распределения, визуально представленного в частотной диаграмме, в сравнении с «колоколом» графика плотности, характерным для нормального распределения). Если переменная имеет существенные асимметрию и эксцесс, то ее можно преобразовать, введя новую переменную (как однозначную функцию от рассматриваемой) таким образом, чтобы эта новая переменная была распределена нормально (подробнее об этом см.: Tabachnik, Fidell , 1996, гл. 4).

Собственные векторы и соответствующие собственные числа
для рассматриваемого учебного примера

Собственный вектор 1

Собственный вектор 2

Собственное значение 1

Собственное значение 2

Поскольку корреляционная матрица диагонализируема, то для получения результатов факторного анализа к ней можно применять матричную алгебру собственных векторов и собственных величин (см. Приложение 1). Если матрица диагонализируема, то вся существенная информация о факторной структуре содержится в ее диагональной форме. В факторном анализе собственные числа соответствуют дисперсии, объясняемой факторами. Фактор с наибольшей собственной величиной объясняет наибольшую дисперсию и т. д., пока не доходит до факторов с небольшими или отрицательными собственными величинами, которые обычно не учитываются при анализе. Матрица факторных нагрузок является матрицей взаимосвязей (интерпретируемых как коэффициенты корреляций) между факторами и переменными. Первый столбец - это корреляции между первым фактором и каждой переменной по очереди: стоимость путевки (-.400), комфортабельность комплекса (.251), температура воздуха (.932), температура воды (.956). Второй столбец - это корреляции между вторым фактором и каждой переменной: стоимость путевки (.900), комфортабельность комплекса (-.947), температура воздуха (.348), температура воды (.286). Фактор интерпретируется на основе сильно связанных с ним (т. е. имеющих по нему высокие нагрузки) переменных. Так, первый фактор главным образом «климатический» (температура воздуха и воды ), в то время как второй «экономический» (стоимость путевки и комфортабельность комплекса ).

Интерпретируя эти факторы, следует обратить внимание на то, что переменные, имеющие высокие нагрузки по первому фактору (температура воздуха и температура воды ), взаимосвязаны положительно, тогда как переменные, имеющие высокие нагрузки по второму фактору (стоимость путевки и комфортабельность комплекса ), взаимосвязаны отрицательно (от дешевого курорта нельзя ожидать большой комфортабельности). Первый фактор называется униполярным (все переменные сгруппированы на одном полюсе), а второй - биполярным (переменные распались на две противоположные по смыслу группы - два полюса). Переменные, имеющие факторные нагрузки со знаком «плюс», образуют положительный полюс, а со знаком «минус» - отрицательный. При этом названия полюсов «положительный» и «отрицательный» при интерпретации фактора не имеют оценочного смысла «плохой» и «хороший». Выбор знака происходит во время вычислений случайным образом. Ортогональное вращение

Вращение обычно применяется после выделения факторов для максимизации высоких корреляций и минимизации низких. Существуют многочисленные методы вращения, но чаще всего используется поворот варимакс , представляющий собой процедуру максимизации дисперсий. Этот поворот максимизирует дисперсии факторных нагрузок, делая высокие нагрузки выше, а низкие ниже для каждого из факторов. Эта цель достигается с помощью матрицы преобразования Λ:

Матрица преобразования - это матрица синусов и косинусов угла Ψ, на который выполняется поворот. (Отсюда и название преобразования - поворот , потому что с геометрической точки зрения происходит поворот осей вокруг начала координат факторного пространства.) Выполнив поворот и получив матрицу факторных нагрузок после поворота, можно проанализировать серию других показателей (см. табл. 4). Общность переменной - это дисперсия, рассчитанная с помощью факторных нагрузок. Это квадратичная множественная корреляция переменной, предсказанная факторной моделью. Общность вычисляется как сумма квадратов факторных нагрузок (СКН) для переменной по всем факторам. В табл. 4 общность для стоимости путевки равна (-.086)2+(.981)2 = .970, т. е. 97% дисперсии стоимости путевки объясняется факторами 1 и 2.

Доля дисперсии фактора по всем переменным - это СКН по фактору, деленная на количество переменных (в случае ортогонального вращения)7 . Для первого фактора доля дисперсии равна:

[(-.086)2+(-.071)2+(.994)2+(.997)2]/4 = 1.994/4 = .50,

т. е. первый фактор объясняет 50% дисперсии переменных. Второй фактор объясняет 48% дисперсии переменных и (в силу ортогональности вращения) два фактора в сумме объясняют 98% дисперсии переменных.

Связь между факторными нагрузками, общностями, СКН,
дисперсией и ковариацией ортогональных факторов после поворота

Общности (h2 )

Стоимость путевки

∑a2 =.970

Уровень комфорта

∑a2 =.960

Температура воздуха

∑a2 =.989

Температура воды

∑a2 =.996

∑a2 =1.994

∑a2 =1.919

Доля дисперсии

Доля ковариации

Доля дисперсии решения, объясняемая фактором, - доля ковариации - это СКН для фактора, деленная на сумму общностей (сумму СКН по переменным). Первый фактор объясняет 51% дисперсии решения (1.994/3.915); второй - 49% (1.919/3.915); два фактора вместе объясняют всю ковариацию.

Eigenval – отражают величину дисперсии соответствующего количества факторов. В качестве упражнения рекомендуем выписать все эти формулы для получения расчетных значений по переменным. Например, для первого респондента:

1.23 = -.086(1.12) + .981(-1.16)

1.05 = -.072(1.12) - .978(-1.16)

1.08 = .994(1.12) + .027(-1.16)

1.16 = .997(1.12) - .040(-1.16)

Или в алгебраической форме:

Z стоимости путевки = a 11F 1 + a 12F 2

Z комфортабельности комплекса = a 2lF 1 + a 22F 2

Z температуры воздуха = a 31F 1 + a 32F 2

Z температуры воды = a 41F 1 + a 42F 2

Чем больше нагрузка, тем с большей уверенностью можно считать, что переменная определяет фактор. Комри и Ли (Comrey, Lee , 1992) предполагают, что нагрузки, превышающие 0.71 (объясняет 50% дисперсии), - превосходные, 0% дисперсии) - очень хорошие, 0%) - хорошие, 0%) - удовлетворительные и 0.32 (объясняет 10% дисперсии) - слабые.

Предположим, что вы проводите (до некоторой степени "глупое") исследование, в котором измеряете рост ста людей в дюймах и сантиметрах. Таким образом, у вас имеются две переменные. Если далее вы захотите исследовать, например, влияние различных пищевых добавок на рост, будете ли вы продолжать использовать обе переменные? Вероятно, нет, т. к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется.

Зависимость между переменными можно обнаружить с помощью диаграммы рассеяния . Полученная путем подгонки линия регрессии дает графическое представление зависимости. Если определить новую переменную на основе линии регрессии, изображенной на этой диаграмме, то такая переменная будет включить в себя наиболее существенные черты обеих переменных. Итак, фактически, вы сократили число переменных и заменили две одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

Факторный анализ - это ветвь математической статистики. Его цели, как и цель других разделов математической статистики, заключается в разработке моделей, понятий и методов, позволяющих анализировать и интерпретировать массивы экспериментальных или наблюдаемых данных вне зависимости от их физической формы.

Одной из наиболее типичных форм представления экспериментальных данных является матрица, столбцы которой соответствуют различным параметрам, свойствам, тестам и т.п., а строки - отдельным объектам, явлениям, режимам, описываемым набором конкретных значений параметров. На практике размеры матрицы оказываются достаточно большими: так, число строк этой матрицы может колебаться от нескольких десятков до нескольких сотен тысяч (например, при социологических обследованиях), а число столбцов - от одного - двух до нескольких сотен. Непосредственный, “визуальный”, анализ матриц такого размера невозможен, поэтому в математической статистике возникло много подходов и методов, предназначенных для того, чтобы “сжать” исходную информацию, заключенную в матрице, до обозримых размеров, извлечь из исходной информации наиболее “существенное”, отбросив “второстепенное”, “случайное”.

При анализе данных, представленных в форме матрицы, возникают два типа задач. Задачи первого типа имеют целью получить “короткое описание” распределения объектов, а задачи второго - выявить взаимоотношения между параметрами.

Следует иметь в виду, что основной стимул для появления указанных задач заключается не только и не столько в желании коротко закодировать большой массив чисел, а в значительно более принципиальном обстоятельстве, имеющем методологический характер: коль скоро удалось коротко описать большой массив чисел, то можно верить, что вскрыта некая объективная закономерность, обусловившая возможность короткого описания; а ведь именно поиск объективных закономерностей и является основной целью, ради которой, как правило, и собираются данные.

Упомянутые подходы и методы обработки матрицы данных отличаются тем, какого типа задачи обработки данных они предназначены решать, и тем, к матрицам какого размера они применимы.

Что же касается проблемы короткого описания связей между параметрами при среднем числе этих параметров, то в данном случае соответствующая корреляционная матрица содержит несколько десятков или сотен чисел и сама по себе она еще не может служить “коротким описанием” существующих связей между параметрами, а должна с этой целью подвергнуться дальнейшей обработке.

Факторный анализ как раз и представляет собой набор моделей и методов, предназначенных для “сжатия” информации, содержащейся в корреляционной матрице. В основе различных моделей факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта или явления, на самом же деле существуют внутренние (скрытые, не наблюдаемые непосредственно) параметры или свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами. Задача факторного анализа - представить наблюдаемые параметры в виде линейных комбинаций факторов и, может быть, некоторых дополнительных, “не существенных” величин - “помех”. Замечательным является тот факт, что, хотя сами факторы не известны, такое разложение может быть получено и, более того, такие факторы могут быть определены, т.е. для каждого объекта могут быть указаны значения каждого фактора.

Факторный анализ, независимо от используемых методов, начинается с обработки таблицы интеркорреляций, полученных на множестве тестов, известной как корреляционная матрица, а заканчивается получением факторной матрицы, т.е. таблицы, показывающей вес или нагрузку каждого из факторов по каждому тесту. Таблица 1 представляет собой гипотетическую факторную матрицу, включающую всего два фактора.

Факторы перечисляются в верхней строке таблицы от более значимого к менее значимому, а их веса в каждом из 10 тестов даны в соответствующих столбцах.

Таблица 1

Гипотетическая факторная матрица

Оси координат. Принято представлять факторы геометрически в виде осей координат, относительно которых каждый тест может быть изображен в виде точки. Рис. 1 поясняет эту процедуру. На этом графике каждый из 10 тестов, приведенных в табл.1, отображен в виде точки относительно двух факторов, которые соответствуют осям I и II. Так, тест 1 представлен точкой с координатами 0,74 по оси I и 0,54 по оси II. Точки, представляющие остальные 9 тестов, построены аналогичным способом, с использованием значений весов из табл. 1.

Следует заметить, что положение осей координат не фиксировано данными. Исходная таблица корреляций определяет лишь положение тестов (т.е. точек на рис. 1) относительно друг друга. Те же точки можно нанести на плоскость с любым положением координатных осей. По этой причине при проведении факторного анализа обычно вращают оси до тех пор, пока не получают наиболее приемлемого и легко интерпретируемого отображения.

Рис. 1. Гипотетическое факторное отображение, показывающее веса двух групповых факторов по каждому из 10 тестов.

На рис. 1 полученные после вращения оси I" и II" показаны пунктирными линиями. Это вращение выполнено в соответствии с предложенными Терстоуном критериями положительного многообразия и простой структуры. Первый предполагает вращение осей до положения, при котором исключаются все значимые отрицательные веса. Большинство психологов считают отрицательные факторные нагрузки логически несоответствующими тестам способностей, так как такая нагрузка означает, что чем выше оценка индивидуума по специфическому фактору, тем ниже будет его результат по соответствующему тесту. Критерий простой структуры, в сущности, означает, что каждый тест должен иметь нагрузки по как можно меньшему числу факторов.

Выполнение обоих критериев дает факторы, которые можно наиболее легко и однозначно интерпретировать. Если тест имеет высокую нагрузку по одному фактору и не имеет значимых нагрузок по другим факторам, мы можем кое-что узнать о природе этого фактора, изучив содержание данного теста. Напротив, если тест имеет средние или низкие нагрузки по шести факторам, то он мало что скажет нам о природе любого из них.

На рис. 1 хорошо видно, что после вращения осей координат все вербальные тесты (1-5) располагаются вдоль или очень близко к оси I", а числовые тесты (6-10) тесно группируются вокруг оси II". Новые факторные нагрузки, измеренные относительно повернутых осей, приведены в табл. 2. Факторные нагрузки в табл. 2 не имеют отрицательных значений, за исключением пренебрежительно малых величин, явно относимых к ошибкам выборки. Все вербальные тесты имеют высокие нагрузки по фактору I" и практически нулевые - по фактору II". Числовые тесты, напротив, имеют высокие нагрузки по фактору II" и пренебрежимо низкие - по фактору I". Таким образом, вращение координатных осей существенно упростило идентификацию и называние обоих факторов, а также описание факторного состава каждого теста. На практике число факторов часто оказывается больше двух, что, разумеется, усложняет их геометрическое представление и статистический анализ, но не изменяет существа рассмотренной процедуры.

Таблица 2

Факторная матрица после вращения

Некоторые исследователи руководствуются теоретической моделью как принципом вращения осей. Кроме того, принимается в расчет неизменность, или подтверждение одних и тех же факторов в независимо выполненных, но сравнимых исследованиях.

Интерпретация факторов. Получив после процедуры вращения факторное решение (или, проще говоря, факторную матрицу), мы можем переходить к интерпретации и наименованию факторов. Этот этап работы скорее требует психологической интуиции, нежели статистической подготовки. Чтобы понять природу конкретного фактора, нам ничего не остается, как изучить тесты, имеющие высокие нагрузки по этому фактору, и попытаться обнаружить общие для них психологические процессы. Чем больше оказывается тестов с высокими нагрузками по данному фактору, тем легче раскрыть его природу. Из табл. 2, к примеру, сразу видно, что фактор I" вербальный, а фактор II" числовой. Приведенные в табл. 2 факторные нагрузки отображают к тому же корреляцию каждого теста с фактором.

Национальный исследовательский ядерный университет «МИФИ»
Факультет бизнес-информатики и управления
комплексными системами
Кафедра экономики и менеджмента
в промышленности (№ 71)
Математические и инструментальные методы обработки
статистической информации
Киреев В.С.,
к.т.н., доцент
Email:
Москва, 2017
1

Нормализация

Десятичное масштабирование
Минимаксная нормализация
Нормализация с помощью стандартного преобразования
Нормализация с помощью поэлементных преобразований
2

Десятичное масштабирование

Vi
"
Vi k , max (Vi) 1
10
"
3

Минимаксная нормализация

Vi
Vi min (Vi)
"
i
max (Vi) min (Vi)
i
i
4

Нормализация с помощью стандартного отклонения

Vi
"
V
V
Vi V
V
- выборочное
среднее
- выборочное среднее квадратическое
отклонение
5

Нормализация с помощью поэлементных преобразований

Vi f Vi
"
Vi 1
"
log Vi
, Vi log Vi
"
Vi exp Vi
"
Vi Vi , Vi 1 y
Vi
"
y
"
6

Факторный анализ

(ФА) представляет собой совокупность методов, которые на
основе реально существующих связей анализируемых признаков, связей самих
наблюдаемых объектов, позволяют выявлять скрытые (неявные, латентные)
обобщающие характеристики организационной структуры и механизма развития
изучаемых явлений, процессов.
Методы факторного анализа в исследовательской практике применяются главным
образом с целью сжатия информации, получения небольшого числа обобщающих
признаков, объясняющих вариативность (дисперсию) элементарных признаков (Rтехника факторного анализа) или вариативность наблюдаемых объектов (Q-техника
факторного анализа).
Алгоритмы факторного анализа основываются на использовании редуцированной
матрицы парных корреляций (ковариаций). Редуцированная матрица – это матрица, на
главной диагонали которой расположены не единицы (оценки) полной корреляции или
оценки полной дисперсии, а их редуцированные, несколько уменьшенные величины. При
этом постулируется, что в результате анализа будет объяснена не вся дисперсия
изучаемых признаков (объектов), а ее некоторая часть, обычно большая. Оставшаяся
необъясненная часть дисперсии - это характерность, возникающая из-за специфичности
наблюдаемых объектов, или ошибок, допускаемых при регистрации явлений, процессов,
т.е. ненадежности вводных данных.
7

Классификация методов ФА

8

Метод главных компонент

(МГК) применяется для снижения размерности
пространства наблюдаемых векторов, не приводя к существенной потере
информативности. Предпосылкой МГК является нормальный закон распределения
многомерных векторов. В МГК линейные комбинации случайных величин определяются
характеристическими
векторами
ковариационной
матрицы.
Главные
компоненты представляют собой ортогональную систему координат, в которой дисперсии
компонент характеризуют их статистические свойства. МГК не относят к ФА, хотя он имеет
схожий алгоритм и решает схожие аналитические задачи. Его главное отличие
заключается в том, что обработке подлежит не редуцированная, а обычная матрица
парных корреляций, ковариаций, на главной диагонали которой расположены единицы.
Пусть дан исходный набор векторов X линейного пространства Lk. Применение
метода главных компонент позволяет перейти к базису пространства Lm (m≤k), такому
что: первая компонента (первый вектор базиса) соответствует направлению, вдоль
которого дисперсия векторов исходного набора максимальна. Направление второй
компоненты (второго вектора базиса) выбрано таким образом, чтобы дисперсия исходных
векторов вдоль него была максимальной при условии ортогональности первому вектору
базиса. Аналогично определяются остальные векторы базиса. В результате, направления
векторов базиса выбраны так, чтобы максимизировать дисперсию исходного набора
вдоль первых компонент, называемых главными компонентами (или главными
осями).Получается, что основная изменчивость векторов исходного набора векторов
представлена несколькими первыми компонентами, и появляется возможность, отбросив
менее существенные компоненты, перейти к пространству меньшей размерности.
9

10. Метод главных компонент. Схема

10

11. Метод главных компонент. Матрица счетов

Матрица счетов T дает нам проекции исходных образцов (J –мерных
векторов
x1,…,xI)
на
подпространство
главных
компонент
(A-мерное).
Строки t1,…,tI матрицы T – это координаты образцов в новой системе координат.
Столбцы t1,…,tA матрицы T – ортогональны и представляют проекции всех образцов на
одну новую координатную ось.
При исследовании данных методом PCA, особое внимание уделяется графикам
счетов. Они несут в себе информацию, полезную для понимания того, как устроены
данные. На графике счетов каждый образец изображается в координатах (ti, tj), чаще всего
– (t1, t2), обозначаемых PC1 и PC2. Близость двух точек означает их схожесть, т.е.
положительную корреляцию. Точки, расположенные под прямым углом, являются
некоррелироваными, а расположенные диаметрально противоположно – имеют
отрицательную корреляцию.
11

12. Метод главных компонент. Матрица нагрузок

Матрица нагрузок P – это матрица перехода из исходного пространства
переменных x1, …xJ (J-мерного) в пространство главных компонент (A-мерное). Каждая
строка матрицы P состоит из коэффициентов, связывающих переменные t и x.
Например, a-я строка – это проекция всех переменных x1, …xJ на a-ю ось главных
компонент. Каждый столбец P – это проекция соответствующей переменной xj на новую
систему координат.
График нагрузок применяется для исследования роли переменных. На этом
графике каждая переменная xj отображается точкой в координатах (pi, pj), например
(p1, p2). Анализируя его аналогично графику счетов, можно понять, какие переменные
связаны, а какие независимы. Совместное исследование парных графиков счетов и
нагрузок, также может дать много полезной информации о данных.
12

13. Особенности метода главных компонент

В основе метода главных компонент лежат следующие допущения:
допущение о том, что размерность данных может быть эффективно понижена
путем линейного преобразования;
допущение о том, что больше всего информации несут те направления, в которых
дисперсия входных данных максимальна.
Можно легко видеть, что эти условия далеко не всегда выполняются. Например,
если точки входного множества располагаются на поверхности гиперсферы, то никакое
линейное преобразование не сможет понизить размерность (но с этим легко справится
нелинейное преобразование, опирающееся на расстояние от точки до центра сферы).
Это недостаток в равной мере свойственен всем линейным алгоритмам и может быть
преодолен за счет использования дополнительных фиктивных переменных, являющихся
нелинейными функциями от элементов набора входных данных (т.н. kernel trick).
Второй недостаток метода главных компонент состоит в том, что направления,
максимизирующие дисперсию, далеко не всегда максимизируют информативность.
Например, переменная с максимальной дисперсией может не нести почти никакой
информации, в то время как переменная с минимальной дисперсией позволяет
полностью разделить классы. Метод главных компонент в данном случае отдаст
предпочтение первой (менее информативной) переменной. Вся дополнительная
информация, связанная с вектором (например, принадлежность образа к одному из
классов), игнорируется.
13

14. Пример данных для МГК

К. Эсбенсен. Анализ многомерных данных, сокр. пер. с англ. под
ред. О. Родионовой, Из-во ИПХФ РАН, 2005
14

15. Пример данных для МГК. Обозначения

Height
Рост: в сантиметрах
Weight
Вес: в килограммах
Hair
Волосы: короткие: –1, или длинные:
+1
Shoes
Обувь: размер по европейскому
стандарту
Age
Возраст: в годах
Income
Доход: в тысячах евро в год
Beer
Пиво: потребление в литрах в год
Wine
Вино: потребление в литрах в год
Sex
Пол: мужской: –1, или женский: +1
Strength
Сила: индекс, основанный на
проверке физических способностей
Region
Регион: север: –1, или юг: +1
IQ
Коэффициент интеллекта,
измеряемый по стандартному тесту
15

16. Матрица счетов

16

17. Матрица нагрузок

17

18. Объекты выборки в пространстве новых компонент

Женщины (F) обозначены кружками ● и ●, а
мужчины (M) – квадратами ■ и ■. Север (N)
представлен голубым ■, а юг (S) – красным
цветом ●.
Размер и цвет символов отражает доход – чем
больше и светлее, тем он больше. Числа
представляют возраст
18

19. Исходные переменные в пространстве новых компонент

19

20. График «каменистой осыпи» (scree plot)

20

21. Метод главных факторов

В парадигме метода главных факторов задача снижения размерности признакового
пространства выглядит так, что n признаков можно объяснить с помощью меньшего
количества m-латентных признаков - общих факторов, где m< исходными признаками и введёнными общими факторами (линейными комбинациями)
учитывают с помощью так называемых характерных факторов.
Конечная цель статистического исследования, проводимого с привлечением
аппарата факторного анализа, как правило, состоит в выявлении и интерпретации
латентных общих факторов с одновременным стремлением минимизировать как их
число, так и степень зависимости от своих специфических остаточных случайных
компонент.
Каждый признак
является результатом
воздействия m гипотетических общих и
одного характерного факторов:
X 1 a11 f1 a12 f 2 a1m f m d1V1
X a f a f a f d V
2
21 1
22 2
2m m
2
X n a n1 f1 a n 2 f 2 a nm f m d nVn
21

22. Вращение факторов

Вращение - это способ превращения факторов, полученных на предыдущем этапе,
в более осмысленные. Вращение делится на:
графическое (проведение осей, не применяется при более чем двухмерном
анализе),
аналитическое (выбирается некий критерий вращения, различают ортогональное и
косоугольное) и
матрично-приближенное (вращение состоит в приближении к некой заданной
целевой матрице).
Результатом вращения является вторичная структура факторов. Первичная
факторная структура (состоящая из первичных нагрузок (полученных на предыдущем
этапе) - это, фактически, проекции точек на ортогональные оси координат. Очевидно, что
если проекции будут нулевыми, то структура будет проще. А проекции будут нулевыми,
если точка лежит на какой-то оси. Таким образом, можно считать вращение переходом от
одной системы координат к другой при известных координатах в одной системе(
первичные факторы) и итеративно подбираемых координатах в другой системе
(вторичные факторы). При получении вторичной структуры стремятся перейти к такой
системе координат, чтобы провести через точки (объекты) как можно больше осей, чтобы
как можно больше проекции (и соответственно нагрузок) были нулевыми. При этом могут
сниматься ограничения ортогональности и убывания значимости от первого к последнему
факторам, характерные для первичной структуры.
22

23. Ортогональное вращение

подразумевает, что мы будем вращать факторы, но не
будем нарушать их ортогональности друг другу. Ортогональное вращение
подразумевает умножение исходной матрицы первичных нагрузок на ортогональную
матрицу R(такую матрицу, что
V=BR
Алгоритм ортогонального вращения в общем случае таков:
0. B - матрица первичных факторов.
1.
Ищем
ортогональную
матрицу
RT
размера
2*2
для
двух
столбцов(факторов) bi и bj матрицы B такую, что критерий для матрицы
R максимален.
2.
Заменяем столбцы bi и bj на столбцы
3.
Проверяем, все ли столбцы перебрали. Если нет, то переход на 1.
4.
Проверяем, что критерий для всей матрицы вырос. Если да, то переход на 1. Если
нет, то конец алгоритма.
.
23

24. Варимаксное вращение

Этот критерий использует формализацию
дисперсию квадратов нагрузок переменной:
сложности
фактора
через
Тогда критерий в общем виде можно записать как:
При этом, факторные нагрузки могут нормироваться для избавления от
влияния отдельных переменных.
24

25. Квартимаксное вращение

Формализуем понятие факторной сложности q i-ой переменной через
дисперсию квадратов факторных нагрузок факторов:
где r - число столбцов факторной матрицы, bij - факторная нагрузка j-го
фактора на i-ю переменную, - среднее значение. Критерий квартимакс старается
максимизировать сложность всей совокупности переменных, чтобы достичь
легкости интерпретации факторов (стремится облегчить описание столбцов):
Учитывая, что
- константа (сумма собственных чисел матрицы
ковариации) и раскрыв среднее значение (а также учтя, что степенная функция
растет пропорционально аргументу), получим окончательный вид критерия для
максимизации:
25

26. Критерии определения числа факторов

Главной проблемой факторного анализа является выделение и интерпретация
главных факторов. При отборе компонент исследователь обычно сталкивается с
существенными трудностями, так как не существует однозначного критерия выделения
факторов, и потому здесь неизбежен субъективизм интерпретаций результатов.
Существует несколько часто употребляемых критериев определения числа факторов.
Некоторые из них являются альтернативными по отношению к другим, а часть этих
критериев можно использовать вместе, чтобы один дополнял другой:
Критерий Кайзера или критерий собственных чисел. Этот критерий предложен
Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только
факторы с собственными значениями равными или большими 1. Это означает, что если
фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной
переменной, то он опускается.
Критерий каменистой осыпи (англ. scree) или критерий отсеивания. Он является
графическим методом, впервые предложенным психологом Кэттелом. Собственные
значения возможно изобразить в виде простого графика. Кэттел предложил найти такое
место на графике, где убывание собственных значений слева направо максимально
замедляется. Предполагается, что справа от этой точки находится только
«факториальная осыпь» - «осыпь» является геологическим термином, обозначающим
обломки горных пород, скапливающиеся в нижней части скалистого склона.
26

27. Критерии определения числа факторов. Продолжение

Критерий значимости. Он особенно эффективен, когда модель генеральной
совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден
для поиска изменений в модели и реализуем только в факторном анализе по методу
наименьших квадратов или максимального правдоподобия.
Критерий доли воспроизводимой дисперсии. Факторы ранжируются по доле
детерминируемой дисперсии, когда процент дисперсии оказывается несущественным,
выделение следует остановить. Желательно, чтобы выделенные факторы объясняли
более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, вовторых, специфика данных может быть такова, что все главные факторы не смогут
совокупно объяснить желательного процента разброса. Поэтому главные факторы
должны вместе объяснять не меньше 50,1 % дисперсии.
Критерий интерпретируемости и инвариантности. Данный критерий сочетает
статистическую точность с субъективными интересами. Согласно ему, главные факторы
можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою
очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы
одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант -
если сильные нагрузки имеются, однако интерпретация затруднительна, от этой
компоненты предпочтительно отказаться.
27

28. Пример использования МГК

Пусть
имеются
следующие
показатели
экономической
деятельности
предприятия: трудоемкость (x1), удельный вес покупных изделий в продукции (x2),
коэффициент сменности оборудования (x3), удельный вес рабочих в составе предприятия
(x4), премии и вознаграждения на одного работника (x5), рентабельность (y). Линейная
регрессионная модель имеет вид:
y = b0 + b1*x1 + b2*x2 + b3*x3 + b4*x4 + b5*x5
x1
x2
x3
x4
x5
y
0,51
0,2
1,47
0,72
0,67
9,8
0,36
0,64
1,27
0,7
0,98
13,2
0,23
0,42
1,51
0,66
1,16
17,3
0,26
0,27
1,46
0,69
0,54
7,1
0,27
0,37
1,27
0,71
1,23
11,5
0,29
0,38
1,43
0,73
0,78
12,1
0,01
0,35
1,5
0,65
1,16
15,2
0,02
0,42
1,35
0,82
2,44
31,3
0,18
0,32
1,41
0,8
1,06
11,6
0,25
0,33
1,47
0,83
2,13
30,1
28

29. Пример использования МГК

Построение регрессионной модели в статистическом пакете показывает,
коэффициент X4 не значим (p-Value > α = 5%) , и его можно исключить из модели.
что
После исключения X4 снова запускается процесс построения модели.
29

30. Пример использования МГК

Критерий Кайзера для МГК показывает, что можно оставить 2 компоненты, объясняющие
около 80% исходной дисперсии.
Для выделенных компонент можно построить уравнения в исходной системе координат:
U1 = 0,41*x1 - 0,57*x2 + 0,49*x3 - 0,52*x5
U2 = 0,61*x1 + 0,38*x2 - 0,53*x3 - 0,44*x5
30

31. Пример использования МГК

Теперь можно построить в новых компонентах новую регрессионную модель:
y = 15,92 - 3,74*U1 - 3,87*U2
31

32. Метод сингулярного разложения (SVD)

Beltrami и Jordan считаются основателями теории сингулярного
разложения. Beltrami – за то, что он первым опубликовал работу о
сингулярном разложении, а Jordan – за элегантность и полноту своей
работы. Работа Beltrami появилась в журнале “Journal of Mathematics for
the Use of the Students of the Italian Universities” в 1873 году, основная
цель которой заключалась в том, чтобы ознакомить студентов с
билинейными формами.Суть метода в разложении матрицы A размера n
x m с рангом d = rank (M) <= min(n,m) в произведение матриц меньшего
ранга:
A =UDVT,
где матрицы U размера n x d и V размера m x d состоят из
ортонормальных столбцов, являющихся собственными векторами при
ненулевых собственных значениях матриц AAT и ATA соответственно и
UTU = V TV = I , а D размера d x d - диагональная матрица с
положительными диагональными элементами, отсортированными в
порядке убывания. Столбцы матрицы U представляют собой,
ортонормальный базис пространства столбцов матрицы A, а столбцы
матрицы V – ортонормальный базис пространства строк матрицы A.
32

33. Метод сингулярного разложения (SVD)

Важным свойством SVD-разложения является тот факт, что если
для k только из k наибольших диагональных элементов, а также
оставить в матрицах U и V только k первых столбцов, то матрица
Ak=UkDkVkT
будет являться лучшей аппроксимацией матрицы A относительно
нормы Фробениуса среди всех матриц с рангом k.
Это усечение во-первых уменьшает размерность векторного
пространства, снижает требования хранения и вычислительные
требования к модели.
Во-вторых, отбрасывая малые сингулярные числа, малые
искажения в результате шума в данных удаляются, оставляя
только самые сильные эффекты и тенденции в этой модели.

Дисперсионный анализ факторов

Факторная матрица

Переменная Фактор А Фактор Б

Как видно из матрицы, факторные нагрузки (или веса) А и Б для различных потребительских требований значительно отличаются. Факторная нагрузка А для требования Т 1 соответствует тесноте связи, характеризующейся коэффициентом корреляции, равным 0,83, т.е. хорошая (тесная) зависимость. Факторная нагрузка Б для того же требования дает r k = 0,3, что соответствует слабой тесноте связи. Как и предполагалось, фактор Б очень хоро­шо коррелируется с потребительскими требованиями Т 2 , Т 4 и Т 6 .

Учитывая, что факторные нагрузки как А, так и Б влияют на не относящиеся в их группу потребительские требования с теснотой связи не более 0,4 (т.е. слабо), можно считать, что представленная выше матрица интеркорреляций определяется двумя независимыми факторами, которые в свою очередь определяют шесть потребительских требований (за исключением Т 7).

Переменную Т 7 можно было выделить в самостоятельный фактор, так как ни с одним потребительским требованием она не имеет значимой корреляционной нагрузки (более 0,4). Но, на наш взгляд, этого не следует делать, так как фактор «дверь не должна ржаветь» не имеет непосредственного отношения к потребительским требованиям по конструкции двери.

Таким образом, при утверждении технического задания на проектирование конструкции дверей автомобиля именно названия полученных факторов будут вписаны как потребительские требования, по которым необходимо найти конструктивное решение в виде инженерных характеристик.

Укажем на одно принципиально важное свойство коэффициента корреляции между переменными: возведенный в квадрат, он показывает, какая часть дисперсии (разброса) признака является общей для двух переменных, насколько сильно эти переменные перекрываются. Так, например, если две переменные Т 1 и Т 3 с корреляцией 0,8 перекрываются со степенью 0,64 (0,8 2), то это означает, что 64% дисперсий той и другой переменной являются общими, т.е. совпадают. Можно также сказать, что общность этих переменных равна 64%.

Напомним, что факторные нагрузки в факторной матрице являются тоже коэффициентами корреляции, но между факторами и переменными (потребительскими требованиями).

Переменная Фактор А Фактор Б

Поэтому возведенная в квадрат факторная нагрузка (дисперсия) характеризует степень общности (или перекрытия) данной переменной и данного фактора. Определим степень перекрытия (дисперсию D) обоих факторов с переменной (потребительским требованием) Т 1 . Для этого необходимо вычислить сумму квадратов весов факторов с первой переменной, т.е. 0,83 х 0,83 + 0,3 х 0,3 = 0,70. Таким образом, общность переменной Т 1 с обоими факторами составляет 70%. Это достаточно значимое перекрытие.


В то же время низкая общность может свидетельствовать о том, что переменная измеряет или отражает нечто, качественно отличающеёся от других переменных, включенных в анализ. Это подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо она измеряет другое понятие (как, например, переменная Т 7), либо имеет большую ошибку измерения, либо существуют искажающие дисперсию признаки.

Следует отметить, что значимость каждого фактора также определяется величиной дисперсии между переменными и факторной нагрузкой (весом). Для того чтобы вычислить собственное значение фактора, нужно найти в каждом столбце факторной матрицы сумму квадратов факторной нагрузки для каждой переменной. Таким образом, например, дисперсия фактора А (D А) составит 2,42 (0,83 х 0,83 + 0,3 х 0,3 + 0,83 х 0,83 + 0,4 х 0,4 + 0,8 х 0,8 + 0,35 х 0,35). Расчет значимости фактора Б показал, что D Б = 2,64, т.е. значимость фактора Б выше, чем фактора А.

Если собственное значение фактора разделить на число переменных (в нашем примере их семь), то полученная величина покажет, какую долю дисперсии (или объем информации) γ в исходной корреляционной матрице составит этот фактор. Для фактора А γ ~ 0,34 (34%), а для фактора Б - γ = 0,38 (38%). Просуммировав результаты, получим 72%. Таким образом, два фактора, будучи объединены, заполняют только 72% дисперсии показателей исходной матрицы. Это означает, что в результате факторизации часть информации в исходной матрице была принесена в жертву построения двухфакторной модели. В результате упущено 28% информации, которая могла бы восстановиться, если бы была принята шестифакторная модель.

Где же допущена ошибка, учитывая, что все рассмотренные пере­менные, имеющие отношение к требованиям по конструкции двери, учтены? Наиболее вероятно, что значения коэффициентов корреляции переменных, относящихся к одному фактору, несколько занижены. С учетом проведенного анализа можно было бы вернуться к формированию иных значений коэффициентов корреляции в матрице интеркорреляций (см. табл. 2.2).

На практике часто сталкиваются с такой ситуацией, при которой число независимых факторов достаточно велико, чтобы их все учесть в решении проблемы или с технической или экономической точки зрения. Существует ряд способов по ограничению числа факторов. Наиболее известный из них - анализ Парето. При этом отбираются те факторы (по мере уменьшения значимости), которые попадают в 80-85%-ную границу их суммарной значимости.

Факторный анализ можно использовать при реализации метода структурирования функции качества (QFD), широко применяемого за рубежом при формировании технического задания на новое изделие.

ЭТАПЫ ВЫПОЛНЕНИЯ ФАКТОРНОГО АНАЛИЗА

Можно выделить девять этапов факторного анализа. Для наглядности представим эти этапы на схеме, а затем дадим им краткую характеристику.

Этапы выполнения факторного анализа приведены на рис.

Рис.

ФОРМУЛИРОВКА ПРОБЛЕМЫ И ПОСТРОЕНИЕ КОРРЕЛЯЦИОННОЙ МАТРИЦЫ

Формулировка проблемы. Необходимо четко определить цели факторного анализа. Переменные, подвергаемые факторному анализу, задаются исходя из прошлых исследований, теоретических выкладок либо по усмотрению исследователя. Необходимо, чтобы переменные измерялись в интервальной или относительной шкале. Опыт показывает, что объем выборки должен быть больше в четыре - пять раз, чем число переменных.

Построение корреляционной матрицы. В основе анализа лежит матрица корреляции между переменными. Целесообразность выполнения факторного анализа определяется наличием корреляций между переменными. Если же корреляции между всеми переменными небольшие, то факторный анализ проводить бесполезно. Переменные, тесно взаимосвязанные между собой, как правило, тесно коррелируют с одним и тем же фактором или факторами.

Для проверки целесообразности использования факторной модели существует несколько статистик. С помощью критерия сферичности Бартлетта проверяется нулевая гипотеза об отсутствии корреляции между переменными в генеральной совокупности. Это значит, что рассматривается утверждение о том, что корреляционная матрица совокупности - это единичная матрица, в которой все диагональные элементы равны единице, а все остальные равны нулю. Проверка с помощью критерия сферичности основана на преобразовании детерминанта корреляционной матрицы в статистику хи-квадрат. При большом значении статистики нулевую гипотезу отклоняют. Если же нулевую гипотезу не отклоняют, то выполнение факторного анализа нецелесообразно. Другая полезная статистика - критерий адекватности выборки Кайзера-Мейера-Олкина (КМО). Данный коэффициент сравнивает значения наблюдаемых коэффициентов корреляции со значениями частных коэффициентов корреляции. Небольшие значения КМО - статистики указывают на то, что корреляции между парами переменных нельзя объяснить другими переменными, а это значит, что использование факторного анализа нецелесообразно.