Интегрирующая и дифференцирующая цепи rc. Интегрирующая цепь RC


RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Её можно рассматривать как делитель напряжения с одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Коэффициент передачи

Интегрирующая RC-цепочка (рис 2) Диффер-ая рис 1

Анализируем RC-цепочку. Применяется как:

1. фильтр частот

Пассивный фильтр

Пассивным электрическим фильтром называется электрическая цепь, предназначенная для выделения определенной полосы частот из сигнала, поступающего на его вход.

Фильтр верхних частот (затухание сигнала)

RC-цепь + ОУ(не даёт затух.сигн,стабильн,коэф пропускания ,усил сигнал

Активный фильтр-менять избирательность фильтра.

Фильтр нижних частот

Коэф передачи


Дифференцирующей цепью называют линейный четырехполюсник, у которого выходное напряжение пропорционально производной входного напряжения. Принципиальная схема дифференцирующей rC -цепи приведена на рис. 5.13, а. Выходное напряжение u вых снимается с резистора r . По второму закону Кирхгофа

а следовательно,

Основные свойства и характеристики п/п. Собственная и примесная проводимость. Зонная энергетическая диаграмма. Уровень Ферми. Генерация и рекомбинация носителей. Время жизни и диффузионная длина. Диффузия и дрейф.

По электрическому сопротивлению полупроводники занимают промежуточное место между проводниками и изоляторами. Полупроводниковые диоды и триоды имеют ряд преимуществ: малый вес и размеры, значительно больший срок службы, большую механическую прочность.

Рассмотрим основные свойства и характеристики полупровод­ников. В отношении их электрической проводимости полупровод­ники разделяются на два типа: с электронной проводимостью и с дырочной проводимостью.

Полупроводники с электронной проводимостью имеют так на­зываемые «свободные» электроны, которые слабо связаны с ядрами атомов. Если к этому полупроводнику приложить разность потенциалов, то «свободные» электроны будут двигаться поступательно – в определенном направлении, создавая, таким образом, электри­ческий ток. Поскольку в этих типах полупроводников электрический ток представляет собой перемещение отрицательно заря­женных частиц, они получили название проводников типа п (от слова negative - отрицательный).

Полупроводники с дырочной проводимостью называются полу­проводниками типа р (от слова positive - положительный). Прохождение электрического тока в этих типах полупроводников можно рассматривать как перемещение положительных зарядов. В полупроводниках с р -проводимостью нет свободных электронов; если атом полупроводника под влиянием каких-либо причин по­теряет один электрон, то он будет заряжен положительно.

Отсутствие одного электрона в атоме, вызывающее положи­тельный заряд атома полупроводника, назвали дыркой (это зна­чит, что образовалось свободное место в атоме). Теория и опыт показывают, что дырки ведут себя как элементарные положитель­ные заряды.

Дырочная проводимость состоит в том, что под влиянием при­ложенной разности потенциалов перемещаются дырки, что равно­сильно перемещению положительных зарядов. В действительности, при дырочной проводимости происходит следующее. Предположим, что имеются два атома, один из которых снабжен дыркой (отсут­ствует один электрон на внешней орбите), а другой находящий­ся справа, имеет все электроны на своих местах (назовем его ней­тральным атомом). Если к полупроводнику приложена разность потенциалов, то под влиянием электрического поля электрон из нейтрального атома, у которого все электроны на своих местах, переместится влево на атом, снабженный дыркой. Благодаря этому атом, имевший дырку, становится нейтральным, а дырка пере­местилась вправо на атом, с которого ушел электрон. В полупровод­никовых приборах процесс «заполнения » дырки свободным электро­ном называется рекомбинацией . В результате рекомбинации исчезает и свободный электрон, и дырка, а создается нейтральный атом. И так, перемещение дырок происходит в направлении, противоположном движению электронов.

В абсолютно чистом (собственном) полупроводнике под действием тепла или света электроны и дырки рождаются парами, поэтому число электронов и дырок в собственном полупроводнике одинаково.

Для создания полупроводников с резко выраженными концентрациями электронов или дырок чистые полупроводники снабжают примесями, образуяпримесные полупроводники . Примеси бывают донорные, дающие электроны, и акцепторные , образующие дырки (т. е. отрывающие электроны от атомов). Следовательно, в полупроводнике с донорной примесью проводимость будет преимущественно электронной, или n – проводимостью. В этих полупроводниках основными носителями зарядов являются электроны, а неосновными – дырки. В полупроводнике с акцепторной примесью, наоборот, основными носителями зарядов являются дырки, а неосновными – электроны; это – полупроводники; с р -проводимостью.

Основными материалами для изготовления полупроводниковых диодов и триодов служат германий и кремний; по отношению к ним донорами являются сурьма, фосфор, мышьяк; акцепторами – индий, галлий, алюминий, бор.

Примеси, которые обычно добавляются в кристаллический полупроводник, резко изменяют физическую картину прохождения электрического тока.

При образовании полупроводника с n -проводимостью в полу­проводник добавляется донорная примесь: например, в полупро­водник германий добавляется примесь сурьмы. Атомы сурьмы, являющиеся донорными, сообщают германию много «свободных» электронов, заряжаясь при этом положительно.


Таким образом, в полупроводнике n-проводимости, образован­ного примесью, имеются следующие виды электрических заря­дов:

1 -подвижные отрицательные заряды (электроны), являющиеся основными носителями (как от донорной примеси, так и от соб­ственной проводимости);

2 -подвижные положительные заряды (дырки) – неосновные носители, возникшие от собственной проводимости;

3 -неподвижные положительные заряды – ионы донорной при­меси.

При образовании полупроводника с р-проводимостью в полупроводник добавляется акцепторная примесь: например, в полупроводник германий добавляется примесь индия. Атомы индия являющиеся акцепторными, отрывают от атомов германия элек­троны, образуя дырки. Сами атомы индия при этом заряжаются отрицательно.

Следовательно, в полупроводнике р-проводимости имеются сле­дующие виды электрических зарядов:

1 -подвижные положительные заряды (дырки) – основные но­сители, возникшие от акцепторной примеси и от собственной про­водимости;

2 -подвижные отрицательные заряды (электроны) – неоснов­ные носители, возникшие от собственной проводимости;

3 -неподвижные отрицательные заряды – ионы акцепторной примеси.

На рис. 1 показаны пластинки р -германия (а) и n -германия (б) с расположением электрических зарядов.

Собственная проводимость полупроводников . Собственным полупроводником,или же полупроводником i-типа называется идеально химически чистый полупроводник с однородной кристаллической решёткой. Ge Si

Кристаллическая структура полупроводника на плоскости может быть определена следующим образом.

Если электрон получил энергию, большую ширины запрещённой зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет 4-хвалентный

положительный заряд, равный по величине заряду электрона и называется дыркой. В полупроводнике i-типа концентрация электронов ni равна концентрации дырок pi. То есть ni=pi.

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направления движения электронов, поэтому дырку принято считать подвижным положительным носителем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счёт собственных носителей заряда называется собственной проводимостью проводника.

2) Примесная проводимость проводников.

Так как у полупроводников i-типа проводимость существенно зависит от внешних условий, в

Полупроводниковых приборах применяются примесные полупроводники.

Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанавливают ковалентные связи с атомами полупроводника, а пятый электрон остаётся свободным. За счёт этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счёт которой ni>pi, называется донорной примесью.

Полупроводник, у которого ni>pi, называется полупроводником с электронным типом

проводимости, или полупроводником n-типа.

В полупроводнике n-типа электроны называются основными носителями заряда, а дырки– неосновными носителями заряда.

При введении трёхвалентной примеси три её валентных электрона восстанавливают ковалентную связь с атомами полупроводника, а четвёртая ковалентная связь оказывается не восстановленной, т. е. имеет место дырка.

В результатеэтогоконцентрациядырокбудетбольшекон-центрацииэлектронов.

Примесь, при которой pi>ni, называется акцепторной примесью.

Полупроводник, у которого pi>ni, называется полупроводником с дырочным типом

проводимости, или полупроводником p-типа.

В полупроводнике p-типа дырки называются основными носителями заряда, а электроны– неосновными носителями заряда.

Мы имеем полное право перейти к рассмотрению цепей, состоящих из этих элементов 🙂 Этим мы сегодня и займемся.

И первая цепь, работу которой мы рассмотрим – дифференцирующая RC-цепь.

Дифференцирующая RC-цепь.

Из названия цепи, в принципе, уже понятно, что за элементы входят в ее состав – это конденсатор и резистор 🙂 И выглядит она следующим образом:

Работа данной схемы основана на том, что ток, протекающий через конденсатор , прямо пропорционален скорости изменения напряжения, приложенного к нему:

Напряжения в цепи связаны следующим образом (по закону Кирхгофа):

В то же время, по закону Ома мы можем записать:

Выразим из первого выражения и подставим во второе:

При условии, что (то есть скорость изменения напряжения низкая) мы получаем приближенную зависимость для напряжения на выходе:

Таким образом, цепь полностью оправдывает свое название, ведь напряжение на выходе представляет из себя дифференциал входного сигнала.

Но возможен еще и другой случай, когда title="Rendered by QuickLaTeX.com" height="22" width="134" style="vertical-align: -6px;"> (быстрое изменение напряжения). При выполнении этого равенства мы получаем такую ситуацию:

То есть: .

Можно заметить, что условие будет лучше выполняться при небольших значениях произведения , которое называют постоянной времени цепи :

Давайте разберемся, какой смысл несет в себе эта характеристика цепи 🙂

Заряд и разряд конденсатора происходит по экспоненциальному закону:

Здесь – напряжение на заряженном конденсаторе в начальный момент времени. Давайте посмотрим, каким будет значение напряжения по истечении времени :

Напряжение на конденсаторе уменьшится до 37% от первоначального.

Получается, что – это время, за которое конденсатор:

  • при заряде – зарядится до 63%
  • при разряде – разрядится на 63% (разрядится до 37%)

С постоянной времени цепи мы разобрались, давайте вернемся к дифференцирующей RC-цепи 🙂

Теоретические аспекты функционирования цепи мы разобрали, так что давайте посмотрим, как она работает на практике. А для этого попробуем подавать на вход какой-нибудь сигнал и посмотрим, что получится на выходе. В качестве примера, подадим на вход последовательность прямоугольных импульсов:

А вот как выглядит осциллограмма выходного сигнала (второй канал – синий цвет):

Что же мы тут видим?

Большую часть времени напряжение на входе неизменно, а значит его дифференцаил равен 0 (производная константы = 0). Именно это мы и видим на графике, значит цепь выполняет свою дифференцирующую функцию. А с чем же связаны всплески на выходной осциллограмме? Все просто – при “включении” входного сигнала происходит процесс зарядки конденсатора, то есть по цепи проходит ток зарядки и напряжение на выходе максимально. А затем по мере протекания процесса зарядки ток уменьшается по экспоненциальному закону до нулевого значения, а вместе с ним уменьшается напряжение на выходе, ведь оно равно . Давайте увеличим масштаб осциллограммы и тогда мы получим наглядную иллюстрацию процесса зарядки:

При “отключении” сигнала на входе дифференцирующей цепи происходит аналогичный переходный процесс, но только вызван он не зарядкой, а разрядкой конденсатора:

В данном случае постоянная времени цепи у нас имеет небольшую величину, поэтому цепь хорошо дифференцирует входной сигнал. По нашим теоретическим расчетам, чем больше мы будем увеличивать постоянную времени, тем больше выходной сигнал будет похож на входной. Давай проверим это на практике 🙂

Будем увеличивать сопротивление резистора, что и приведет к росту :

Тут даже не надо ничего комментировать – результат налицо 🙂 Мы подтвердили теоретические выкладки, проведя практические эксперименты, так что давайте переходить к следующему вопросу – к интергрирующим RC-цепям .


Запишем выражения для вычисления тока и напряжения данной цепи:

В то же время ток мы можем определить из Закона Ома:

Приравниваем эти выражения и получаем:

Проинтегрируем правую и левую части равенства:

Как и в случае с дифференцирующей RC-цепочкой здесь возможны два случая:

Для того, чтобы убедиться в работоспособности цепи, давайте подадим на ее вход точно такой же сигнал, какой мы использовали при анализе работы дифференцирующей цепи, то есть последовательность прямоугольных импульсов. При малых значениях сигнал на выходе будет очень похож на входной сигнал, а при больших величинах постоянной времени цепи, на выходе мы увидим сигнал, приближенно равный интегралу входного. А какой это будет сигнал? Последовательность импульсов представляет собой участки равного напряжения, а интеграл от константы представляет из себя линейную функцию (). Таким образом, на выходе мы должны увидеть пилообразное напряжение. Проверим теоретические выкладки на практике:

Желтым цветом здесь изображен сигнал на входе, а синим, соответственно, выходные сигналы при разных значениях постоянной времени цепи. Как видите, мы получили именно такой результат, который и ожидали увидеть 🙂

На этом мы и заканчиваем сегодняшнюю статью, но не заканчиваем изучать электронику, так что до встречи в новых статьях! 🙂

Лабораторная работа

«Дифференцирующие и интегрирующие цепи»

Полянчев С., Коротков Р.

Цели работы: ознакомление с принципом действия, основными свойствами и параметрами дифференцирующих и интегрирующих цепей, установление условия дифференцирования и интегрирования, определение постоянной времени.

Теоретическая часть.

В радиоэлектронике и экспериментальной физике возникает необходимость преобразования формы сигналов. Часто это может быть выполнено путём их дифференцирования или интегрирования. Например, при формировании запускающих импульсов для управления работой ряда устройств импульсной техники (дифференцирующие цепи) или при выделении полезного сигнала на фоне шумов (интегрирующие цепи).

Анализ простейших цепей для дифференцирования и интегрирования сигналов

Дифференцирующей называется радиотехническая цепь, с выхода которой может сниматься сигал, пропорциональный производной от входного сигнала U вых (t) ~ dU вх (t)/dt(1)

Аналогично, для интегрирующей цепи: U вых (t) ~ òU вх (t)dt(2)

Поскольку дифференцирование и интегрирование являются линейными математическими операциями, указанные выше преобразования сигналов могут осуществляться линейными цепями, т.е. схемами, состоящими из постоянных индуктивностей, емкостей и сопротивлений.

Рассмотрим цепь с последовательно соединёнными R, C и L, на вход которой подаётся сигал U вх (t) (рис.1).

Выходной сигал в такой цепи можно снимать с любого её элемента. При этом:

U R +U C +U L = Ri(t) + 1/c òi(t)dt + L di(t)/dt = U вх (t). (3)

Очевидно, что поскольку значения U R , U C и U L определяются параметрами R, C и L, то подбором последних могут быть осуществлены ситуации, когдаU R , U C и U L существенно неодинаковы. Рассмотрим для случая цепи, в которой U L » 0 (RC – цепь).

А) U C >> U R , тогда из (3) имеем:

i(t) = C dU вх (t)/dt (4)

Отсюда следует, что напряжения на сопротивлении пропорционально производной от входного сигнала:

U R (t) = RCdU вх (t)/dt = t 0 dU вх (t)/dt. (5)

Таким образом, мы приходим к схеме дифференцирующего четырёхполюсника, показанной на рис.2, в которой выходной сигал снимается с сопротивления R.

Б) U R >> U C . В этом случае из (3) получаем: i(t) = U вх (t)/R(6) и напряжение на емкости равно:

U C = 1/RCòU вх (t)dt = 1/t 0 òU вх (t)dt. (7)

Видно, что для осуществления операции интегрирования необходимо использовать RC-цепочку в соответствии со схемой на рис.3.

Для получения как эффекта дифференцирования, так и интегрирования, сигнал надо снимать с элемента, на котором наименьшее падение напряжения. Величина U вых (t) определяется значением постоянной времени t 0 , равной RC для RC-цепочки.

Очевидно, что эффекты дифференцирования и интегрирования в общем случае отвечают, соответственно, относительно малым и большим t 0 .

Условия дифференцирования и интегрирования

Уточним теперь, как связаны условия А и Б, а также использованные выше понятия «малого» и «большого» t 0 с параметрами R, C, L и характеристиками сигнала.

Пусть входной сигнал U вх (t) обладает спектральной плотностью

, т.е. (12)

Тогда при точном дифференцировании для выходного сигнала получим:

, (13)

откуда следует, что коэффициент передачи идеального дифференцирующего четырёхполюсника (

) равен: (14)

Рассмотренная нами дифференцирующая цепь (рис.2) имеет коэффициент передачи:

(15)

Из сравнения (14) и (15) видно, что рассмотренная нами цепь будет тем ближе к идеальной, чем лучше выполняется условие

wt 0 << 1 (16)

Причём, для всех частот в спектре входного сигнала. Для упрощения оценки в неравенство (16) обычно подставляют максимальную частоту в спектре входного сигнала w m t 0 << 1.

Итак, чтобы продифференцировать некоторый сигнал, необходимо найти его спектральный состав и собрать RC-цепь с постоянной времени t 0 << w m -1 , где w m – максимальная частота в спектре входного сигнала.

Отметим, что для импульсных сигналов верхнюю границу полосы частот можно оценить по формуле (2) w m = 2p/t u , где t u – длительность импульса. Т.о., в этом случае условие дифференцирования запишется в виде

t 0 << t u (17)

Совершенно аналогично можно показать, что для удовлетворительного интегрирования требуется выполнение условия

wt 0 >> 1 (18)

также для всех частот спектра входного сигнала, в том числе и для самой нижней. Аналогично для интегрирования импульсов длительностью t u условие интегрирования запишется в виде

t 0 << t u (19)

Из неравенств (16), (18) следует, что при заданной цепи дифференцирование осуществляется тем точнее, чем ниже частоты, на которых концентрируется энергия входного сигнала, а интегрирование – чем выше эти частоты. Чем точнее дифференцирование или интегрирование, тем меньше величина выходного сигнала.


Прохождение прямоугольных импульсов через RC -цепи

В качестве примера, иллюстрирующего дифференцирование и интегрирование сигналов, рассмотрим отклик RC-цепей, показанных на рис.2 и 3, на прямоугольный импульс. Возьмём цепь, на выходе которой стоит сопротивление (рис.2), найдём осциллограмму выходного напряжения, т.е. вид U R (t). Пусть в момент времени t = 0 на входе возникает скачок напряжения U 0 (рис.4).

В этом случае для 0 < t < t u можно записать уравнение цепи в виде:

U 0 = 1/Còi(t)dt + U R (t). (17)

После дифференцирования получим

dU R /dt + U R /t 0 = 0. (18)

Поскольку ёмкость С не может зарядиться мгновенно, то для t = 0, U R = U 0 всё входное напряжение оказывается приложенным к сопротивлению. С учётом этого начального условия решение уравнения (18) запишется в виде:

. (19)

Экспоненциальный спад выходного напряжения описывает процесс зарядки ёмкости через сопротивление R и соответствующее перераспределение напряжения между R и C. При этом постоянная времени t 0 характеризует скорость зарядки ёмкости и может быть интерпретирована как время, за которое напряжение U R уменьшится в е раз.

Для t 0 << t u экспоненциальная зависимость становится резче, в результате на выходе наблюдаем короткие импульсы в момент начала и окончания входного воздействия, являющиеся удовлетворительной аппроксимацией производной от входного сигнала (рис.4).

Если выходное напряжение снимается с конденсатора, то для 0 < t < t u получим:

(21)

и для t >= t u

. (22)

Если цепь является интегрирующей, то выполняется неравенство t 0 >> t u , что позволяет использовать разложение экспоненты в ряд Тейлора.

Дифференцирующей цепью называется цепь, напряжение на выходе которой пропорционально первой производной по времени от входного напряжения:


Рис. 3.7.1. Схема дифференцирующей цепи

Дифференцирующая цепь (рис. 3.7.1) состоит из резистора R и конденсатора С , параметры которых выбираются таким образом, чтобы активное сопротивление было во много раз меньше емкостного сопротивления.

Напряжения на входе и выходе цепи связаны соотношением:

u вх = u вых + u C ;

u вых = i · R


u C = u вх – u вых = u вх – iR ;

Если величина i R значительно меньше, чем u вх, то u вх ≈ u C .


Величина τ = RC называется постоянной времени дифференцирующей цепи .

Чем меньше постоянная времени по сравнению с длительностью импульса на входе, тем выше точность дифференцирования.

Если ко входу дифференцирующей цепи подвести напряжение синусоидальной формы, то выходное напряжение будет тоже синусоидальным, однако, оно будет сдвинуто по фазе относительно входного напряжения, и его амплитуда будет меньше, чем у входного. Таким образом, дифференцирующая цепь, являющаяся линейной системой, не меняет спектрального состава подводимого к ней напряжения.

Подача на вход дифференцирующей цепи прямоугольного импульса, состоящего, как известно, из бесчисленного множества синусоидальных составляющих, изменяет амплитуду и фазу этих составляющих, что приводит к изменению формы выходного напряжения по сравнению с формой входного.

При подаче прямоугольного импульса на вход дифференцирующей цепи начинается заряд конденсатора С через сопротивление R .

В начальный момент времени напряжение на конденсаторе равно нулю, поэтому выходное напряжение равно входному. По мере заряда конденсатора напряжение на нем начинает увеличиваться по экспоненциальному закону:

u c = u вх · (1 – e – t/τ) ;

где τ = RC – постоянная времени цепи.

Напряжение на выходе дифференцирующей цепи:

u вых = u вх – u c = u вх – u вх · (1 – e – t / τ) = u вх · e – t / τ) ;

Таким образом, по мере заряда конденсатора напряжение на выходе схемы убывает по экспоненциальному закону. Когда конденсатор полностью зарядится, напряжение на выходе дифференцирующей цепи станет равным нулю.

В момент окончания прямоугольного импульса напряжение на входе схемы скачком уменьшится до нуля. Поскольку конденсатор в это время остается полностью заряженным, то с этого момента начнется его разряд через сопротивление R . В начале разряда конденсатора напряжение на выходе схемы по величине приблизительно равно напряжению на конденсаторе, но с противоположным знаком, т. к. направление тока разряда противоположно току заряда. По мере разряда конденсатора напряжение на выходе цепи уменьшается по экспоненциальному закону.



Постоянная времени цепи RC

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt) , а значение тока в резисторе, согласно закону Ома, составит U/R , где U - напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = - t/RC + Const .
Выразим из него напряжение U потенцированием: U = e -t/RC * e Const .
Решение примет вид:

U = e -t/RC * Const.

Здесь Const - константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t/RC .

Экспонента - функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828...

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U , в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения U C и определится выражением:

Тогда напряжение U C на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

U C = U(1 - e -t/RC )

При t = RC , напряжение на конденсаторе составит U C = U(1 - e -1 ) = U(1 - 1/e) .
Время, численно равное произведению RC , называется постоянной времени цепи RC и обозначается греческой буквой τ .

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 - 1/e )*100% ≈ 63,2% значения U .
За время 3τ напряжение составит (1 - 1/e 3)*100% ≈ 95% значения U .
За время 5τ напряжение возрастёт до (1 - 1/e 5)*100% ≈ 99% значения U .

Если к конденсатору емкостью C , заряженному до напряжения U , параллельно подключить резистор сопротивлением R , тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять U C = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e , что составит 1/e *100% ≈ 36.8% значения U .
За время 3τ конденсатор разрядится до (1/e 3)*100% ≈ 5% от значения U .
За время 5τ до (1/e 5)*100% ≈ 1% значения U .

Параметр τ широко применяется при расчётах RC -фильтров различных электронных цепей и узлов.

Связь мгновенных значений напряжений и токов на элементах

Электрической цепи

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.); - известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии); - к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

, (3)

где и - соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы; - число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки); - число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная - свободной составляющей.

В соответствии с вышесказанным, . общее решение уравнения (2) имеет вид

(4)

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

Таблица 2. Законы коммутации

See more at: http://www.toehelp.ru/theory/toe/lecture24/lecture24.html#sthash.jqyFZ18C.dpuf

Интегрирующая цепь RC

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.