Как найти касательное напряжение. Понятие о напряжениях. Нормальные и касательные напряжения. Обратная задача в плоском напряженном состоянии

Как уже известно, внешние сосредоточенные (т. е. приложенные в точке) нагрузки реально не существуют. Они представляют собой статический эквивалент распределенной нагрузки.

Аналогично сосредоточенные внутренние силы и моменты, характеризующие взаимодействие между отдельными частями элемента (или между отдельными элементами конструкции), являются также лишь статическим эквивалентом внутренних сил, распределенных по площади сечения.

Эти силы, так же как и внешние нагрузки, распределенные по поверхности, характеризуются их интенсивностью, которая равна

где - равнодействующая внутренних сил на весьма малой площадке проведенного сечения (рис. 7.1, а).

Разложим силу на две составляющие: касательную АТ и нормальную , из которых первая расположена в плоскости сечения, а вторая перпендикулярна к этой плоскости.

Интенсивность касательных сил в рассматриваемой точке сечения называется касательным напряжением и обозначается (тау), а интенсивность нормальных сил - нормальным напряжением и обозначается (сигма). Напряжения выражаются формулами

Напряжения имеют размерность и т. д.

Нормальное и касательное напряжения являются составляющими полного напряжения в рассматриваемой точке по данному сечению (рис. 7.1, б). Очевидно, что

Нормальное напряжение в данной точке по определенному сечению характеризует интенсивность сил отрыва или сжатия частиц элемента конструкций, расположенных по обе стороны этого сечения, а касательное напряжение - интенсивность сил, сдвигающих эти частицы в плоскости рассматриваемого сечения. Величины напряжений а и в каждой точке элемента зависят от направления сечения, проведенного через эту точку.

Совокупность напряжений , действующих по различным площадкам, проходящим через рассматриваемую точку, представляет собой напряженное состояние в этой точке.

Нормальные и касательные напряжения имеют в сопротивлении материалов весьма важное значение, так как от их величин зависит прочность сооружения.

Нормальные и касательные напряжения в каждом поперечном сечении бруса связаны определенными зависимостями с внутренними усилиями, действующими в этом сечении. Для получения таких зависимостей рассмотрим элементарную площадку поперечного сечения F бруса с действующими по этой площадке нормальными а и касательными напряжениями (рис. 8.1). Разложим напряжения на составляющие параллельные соответственно осям у и . На площадку действуют элементарные силы параллельные соответственно осям Проекции всех элементарных сил (действующих на все элементарные площадки сечения F) на оси и их моменты относительно этих осей определяются выражениями

Ранее мы для простоты и наглядности рассматривали обычную деревянную линейку в качестве балки, что позволило с известными допущениями вывести основные уравнения и формулы для расчета несущей способности балки. Благодаря этим уравнениям мы построили эпюры поперечных сил "Q" и эпюры изгибающих моментов "М".

Рисунок 149.2.1 . Эпюры поперечных сил и изгибающих моментов, действующих в поперечных сечениях балки при сосредоточенной нагрузке.

Что в итоге позволило достаточно просто и наглядно определить значение максимального изгибающего момента и соответственно значение максимальных нормальных растягивающих и сжимающих напряжений, возникающих в наиболее нагруженном поперечном сечении балки.

Дальше, зная расчетное сопротивление материала балки (значения расчетных сопротивлений проводятся в соответствующих СНиПах), можно достаточно легко определить момент сопротивления поперечного сечения, а затем и другие параметры балки, высоту и ширину, если балка прямоугольного сечения, диаметр, если балка круглого сечения, номер по сортаменту, если балка из металлического горячекатаного профиля.

Такой расчет на прочность является расчетом по первой группе предельных состояний и позволяет определить максимально допустимую нагрузку, которую может выдержать рассчитываемая конструкция. Превышение максимально допустимой нагрузки приведет к разрушению конструкции. Как именно будет разрушаться конструкция, нас в данном случае не интересует, так как данный сайт посвящен не вопросам теоретических и практических исследований предельных состояний материалов, а всего лишь некоторым методам расчетов наиболее распространенных строительных конструкций.

Как правило инженерные расчеты конструкций, которые будут использоваться сотнями тонн и десятками кубометров, выполняются так, чтобы получить максимально загруженную конструкцию. Поэтому такие расчеты достаточно сложные и разного рода коэффициентов, учитывающих срок службы конструкции, характер нагрузок, цикличность, динамичность нагрузок, неоднородность используемого материала и т.д. - десятки. Это логично так как при валовом производстве каждый процент в итоге дает ощутимую экономию. В частном строительстве, выполняемом один раз, прочность конструкции, пусть даже с двукратным запасом намного важнее возможной экономии материалов и потому расчеты для частного малоэтажного строительства можно максимально упростить, используя всего лишь один поправочный коэффициент γ = 1.6÷2, если на этот коэффициент будут умножаться значения напряжений, или γ = 0.5÷0.7, если на этот коэффициент будет умножаться значение расчетного сопротивления. Однако этим даже такие простые расчеты не ограничиваются.

Любая балка, имеющая длину значительно больше, чем высоту поперечного сечения, представляющая собой стержень, под действием нагрузок будет деформироваться. Результатами деформации являются смещение центральной оси балки по оси у относительно оси х , проще говоря прогиб, а также поворот поперечных сечений балки относительно плоскости поперечного сечения. И эти самые прогибы и углы поворота вне зависимости от того, какие опоры у балки и какие на нее действуют нагрузки, также можно определить. Для определения максимального угла поворота и максимального прогиба также строятся соответствующие эпюры, позволяющие определить, какое поперечное сечение сместится в результате прогиба больше всего и какое будет наклонено больше всего.

Рисунок 174.5.6 . Эпюра углов поворота при действии сосредоточенной нагрузки посредине балки

Эпюра прогибов здесь не приводится, но как ни странно, это самая простая эпюра, показывающая положение оси, проходящей через поперечные сечения балки в результате деформации и эту эпюру воочию можно наблюдать на любой достаточно прогнувшейся балке или любой другой конструкции. Зная модуль упругости материала балки и момент инерции поперечного сечения определить максимальный прогиб также не очень сложно. Максимально упростить решение этих задач позволяют расчетные схемы для балок , к которым в зависимости от характера опор и вида нагружения даны соответствующие формулы.

Такой расчет деформаций является расчетом по предельным состояниям второй группы и достаточно наглядно показывает, на какую величину прогнется балка. Это бывает важно не только в связи с технологическими ограничениями, например для подкрановых балок, но также и из эстетических соображений. Например, когда потолок, а точнее перекрытие, хотя и достаточно прочное, заметно прогнется, то приятного в этом мало. Максимально допустимые величины прогибов для различных строительных конструкций приводятся в СНиП 2.01.07-85 "Нагрузки и воздействия" (в его актуализированной редакции). Впрочем при расчетах для себя никто не запрещает использовать еще меньшие значения прогиба.

Тут у читателя может возникнуть вполне резонный вопрос, а зачем понадобилось строить эпюру касательных напряжений "Q", если ни в каких расчетах эта эпюра не участвует. Что ж, пришло время ответить на этот вопрос.

Дело в том, что расчет разного рода балок, особенно постоянного прямоугольного сечения, лежащих горизонтально, на прочность при действии касательных напряжений очень редко является определяющим в отличие от приведенных выше расчетов. Тем не менее знать, что такое - касательные напряжения - и как они влияют на работу конструкции, пусть даже очень упрощенно, но все-таки надо.

Как следует из определения, касательные напряжения действуют в плоскости поперечного сечения, как бы касаются поперечного сечения потому и названы касательными. Определить значение касательных напряжений на первый взгляд просто: достаточно разделить значение поперечной силы (для этого нам и нужна эпюра "Q"), на площадь поперечного сечения (в рассматриваемом нами примере поперечные силы действовали только вдоль оси у и далее этого нам вполне хватит, усложнить любой расчет мы успеем всегда):

т = Q/F = Q/(bh) (270.1)

В итоге мы можем построить эпюру касательных напряжений "τ "(в дополнение к нормальным напряжениям "σ") следующего вида:

Рисунок 270.1 . Предварительная эпюра касательных напряжений "τ "

Однако такая эпюра касательных напряжений была бы справедлива для некоего абстрактного материала, обладающего линейной упругостью вдоль оси у , и абсолютно жесткого вдоль оси z , в результате чего в поперечном сечении такого материала не происходит перераспределения напряжений и есть только один вид деформации относительно оси у . В действительности же любое тело, обладающее изотропными свойствами, под действием нагрузок пытается сохранить свой объем, а значит и рассматриваемое нами сечение пытается сохранить свою площадь. Наглядный пример, когда вы садитесь на мяч, высота его под действием вашего веса уменьшается, но увеличивается ширина. Причем процесс этот носит не линейный характер. Если вырезать из теста кубик или параллелепипед, а затем надавить на него, то боковые грани станут выпуклыми, подобный процесс происходит и при лабораторных испытаниях на сжатие образцов металла или других материалов.

Кроме всего прочего это означает еще и то, что касательные напряжения, действующие вдоль оси у , вызывают появление касательных напряжений вдоль оси z и эпюра касательных напряжений вдоль оси z будет более наглядно показывать изменение касательных напряжений по отношению к высоте балки. При этом форма эпюры будет напоминать боковую грань сплюснутого кубика из теста, а площадь эпюры конечно же не изменится. Т.е. значения эпюры касательных напряжений в самом низу и в самом верху поперечного сечения будут равны нулю, а максимальное значение (при прямоугольном сечении) будет посредине высоты сечения и явно больше Q/F. Исходя из условия равенства площадей эпюр максимальное значение эпюры касательных напряжений не может быть более 2Q/F, да и то только в том случае, если эпюра будет представлять собой два треугольника и в этом случае максимальное значение и есть высота треугольников. Однако как мы уже выяснили эпюра по своему виду больше напоминает часть круга или параболу, т.е. значение максимального касательного напряжения будет составлять около 1.5Q/F :

Рисунок 270.2 . Более точная эпюра касательных напряжений.

Серой линией показана предварительно принятая нами эпюра касательных напряжений, но теперь касательные напряжения направлены вдоль оси z .

Математически изменение касательных напряжений в зависимости от высоты сечения можно выразить через изменение статического момента отсеченной части сечения с учетом изменения ширины сечения, так как далеко не всегда балки имеют прямоугольную форму сечения. В итоге формула для определения касательных напряжений (вывод формулы здесь не приводится) имеет следующий вид:

т = Q y S z отс /bI z (270.2) - формула проф. Д. И. Журавского

где Q y - значение поперечной силы в рассматриваемом поперечном сечении, определяется по эпюре "Q"

S z отс - статический момент отсеченной части сечения на рассматриваемой высоте относительно оси z . Определяется как площадь отсеченной части, умноженная на расстояние между центром тяжести всего сечения и центром тяжести отсеченной части сечения. Например, в самом низу поперечного сечения, т.е. при высоте h=0, площадь отсеченной части сечения будет также равна 0, а значит и касательные напряжения, действующие по ширине b поперечного сечения, также будут равны нулю. Для сечения, проходящего через центр тяжести поперечного сечения, т.е. при высоте отсеченной части сечения, равной h/2, статический момент будет составлять (bh/2)(h/4) = bh 2 /8. При высоте отсеченного сечения, равной высоте поперечного сечения статический момент будет равен нулю, так как центр тяжести отсеченной части сечения в этом случае будет совпадать с центром тяжести сечения.

b - ширина поперечного сечения на рассматриваемой высоте поперечного сечения. Для балок прямоугольного сечения ширина сечения величина постоянная, однако бывают балки круглого, таврового, двутаврового и любого другого сечения. Более того, определение касательных напряжений чаще всего и используется при расчете балок не прямоугольного сечения, так как при переходе сечения из полок в стенку появляется значительный скачок касательных напряжений в связи с изменением ширины сечения, причем переход из полок в стенку обычно происходит на такой высоте, где нормальные напряжения достаточно велики и это учитывается соответствующим расчетом.

I z - момент инерции поперечного сечения относительно оси z . В данном случае единственная более менее постоянная величина. Для прямоугольного поперечного сечения момент инерции составляет bh 3 /12.

Таким образом, согласно формулы (270.2) максимальное значение касательных напряжений составит:

т = 12Qbh 2 /(8b 2 h 3) = 1.5Q/F (270.3)

Такой же результат дала нам и геометрия.

И еще. Для материалов, обладающих ярко выраженными анизотропными свойствами, например, для древесины проверка на прочность по касательным напряжениям необходима. Дело в том, что прочность древесины сжатию вдоль волокон и прочность древесины сжатию поперек волокон - абсолютно разные вещи. Поэтому проверка выполняется для поперечных сечений, в которых касательные напряжения максимальны, как правило это сечения на опорах балки (при равномерно распределенной нагрузке). В этом случае полученное значение касательных напряжений сравнивается со значением расчетного сопротивления древесины сжатию или смятию поперек волокон - R c90 .

Впрочем, существует и другой подход к вопросу определения касательных напряжений: под действием нагрузок балка деформируется, при этом максимальные нормальные сжимающие и растягивающие напряжения возникают в самом низу и в самом верху поперечного сечения балки, что можно видеть по эпюре "σ" на рис.270.1.

При этом между волокнами такого неоднородного материала, как древесина, как впрочем и между слоями любого другого материала возникают касательные напряжения, направленные теперь по оси х , т.е. по той же оси, что и нормальные сжимающие и касательные напряжения, возникающие в результате действия изгибающего момента.

Происходит это от того, что каждый рассматриваемый слой испытывает разные по значению нормальные нагрузки и в результате все того же перераспределения напряжений и возникают касательные напряжения . Эти касательные напряжения как бы пытаются расколоть балку на отдельные слои, каждый из которых будет работать как отдельная балка.

Разница же несущей способности между отдельно взятыми слоями и цельной балкой очевидна. Например, если взять пачку бумаги хоть в 500 листов, то согнуть такую пачку - пара пустяков, а если склеить все листы, т.е. слои балки между собой, то мы получим цельную балку и вот ее уже согнуть будет намного труднее. Но между склеенными листами и будут возникать те самые, условно говоря, нормальные касательные напряжения. Впрочем, значение нормальных касательных напряжений определяется таким же образом и в расчетах участвует все та же поперечная сила, определяемая по эпюре "Q". Вот только рассматривается не отсеченная, а скалываемая часть сечения, соответственно статический момент может обозначаться - S z ск . В этом случае полученное значение касательных напряжений сравнивается со значением расчетного сопротивления древесины сколу вдоль волокон - R cк .

Правда, значения R с90 и R cк для древесины имеют одинаковое значение, но тем не менее касательные напряжения от действия поперечных сил и от деформаций в результате прогиба принято различать (так как рассматриваются две перрпендикулярные друг другу главные площадки напряжений), да и направление действия касательных напряжений важно при определении общего напряжения в исследуемой точке тела.

Впрочем, все это не более чем общие понятия о касательных напряжениях. В реальных материалах процесс перераспределения напряжений намного более сложный, все потому, что даже металл отнести к изотропным материалам можно достаточно условно. Впрочем эти вопросы рассматривает отдельная научная дисциплина - теория упругости. При расчете строительных конструкций, представляющих собой стержни - балки или пластины - плиты размером на помещение, вполне можно пользоваться формулой (270.2), выведенной на основе общих положений линейной теории упругости. При расчете массивных тел следует использовать методы нелинейной теории упругости.

  • 4. Основные понятия о деформируемом теле: линейные и угловые перемещения и деформации; упругость, пластичность, хрупкость; изотропия и анизотропия.
  • 5. Метод сечений для определения внутренних усилий. Примеры использования метода сечений.
  • 6. Напряжение в точке. Полное, нормальное, касательное напряжения. Размерности напряжения.
  • 19. Удельная потенциальная энергия линейно-упругого материала при одноосном напряжённом состоянии и при чистом сдвиге.
  • 21. Поперечный изгиб прямого бруса. Вывод дифференциальных зависимостей между интенсивностью внешней поперечной нагрузки, внутренней поперечной силой и внутренним изгибающим моментом.
  • 24. Вывод формул для определения осевых моментов инерции прямоугольника, треугольника, круга, кольца.
  • 25. Преобразование моментов инерции плоской фигуры при параллельном переносе осей координат.
  • 26. Преобразование моментов инерции плоской фигуры при повороте осей координат. Главные моменты инерции. Главные центральные оси плоской фигуры. Моменты инерции плоских симметричных фигур.
  • 28. Прямой чистый изгиб прямого бруса. Обобщение задачи об определении напряжений в брусьях с симметричными поперечными сечениями и в брусьях с несимметричными поперечными сечениями.
  • 29. Условия прочности при прямом чистом изгибе бруса. Три типа задач по расчёту на прочность. Привести числовые примеры. Жёсткость бруса при изгибе.
  • 30. Рациональные формы поперечных сечений упругих балок (прямых брусьев) при прямом чистом изгибе. Привести примеры.
  • 32. Прямой поперечный изгиб балки (прямого бруса). Вывод формулы для определения касательных напряжений, возникающих в поперечных сечениях двутавровой балки с использованием формулы д.И.Журавского.
  • 45. Формула Эйлера для критической силы при различных способах опорных закреплений бруса. Приведённая длина бруса.
  • 6. Напряжение в точке. Полное, нормальное, касательное напряжения. Размерности напряжения.

    Напряжение – мера распределения внутренних сил по сечению.

    Где
    - внутренняя сила, выявленная на площадке
    .

    Полное напряжение
    .

    Нормальное напряжение – проекция вектора полного напряжения на нормаль обозначается через σ.
    , где Е – модуль упругости I рода, ε – линейная деформация. Нормальное напряжения вызывается только изменением длин волокон, направлением их действий, а угол поперечных и продольных волокон не искажается.

    Касательное напряжение – составляющие напряжения в плоскости сечения.
    , где
    (для изотропного материала) – модуль сдвига (модуль упругости II рода), μ – коэффициент Пуассона (=0,3), γ – угол сдвига.

    7. Закон Гука для одноосного напряжённого состояния в точке и закон Гука для чистого сдвига. Модули упругости первого и второго рода, их физический смысл, математический смысл и графическая интерпретация. Коэффициент Пуассона.

    - закон Гука для одноосного напряжённого состояния в точке.

    Е – коэффициент пропорциональности (модуль упругости I рода). Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и σ, т.е. в кГ/см 2 .

    - закон Гука для сдвига.

    G– модуль сдвига (модуль упругости II рода). Размерность модуляGтакая же, как и у модуля Е, т.е. кГ/см 2 .
    .

    μ – коэффициент Пуассона (коэффициент пропорциональности).
    . Безразмерная величина, характеризующая свойства материала и определяющаяся экспериментально и лежит в интервале от 0,25 до 0,35 и не могут превышают 0,5 (для изотропного материала).

    8. Центральное растяжение (сжатие) прямого бруса. Определение внутренних продольных сил методом сечений. Правило знаков для внутренних продольных сил. Привести примеры расчёта внутренних продольных сил.

    Брус испытывает состояние центрального растяжения (сжатия) в том случае, если в его поперечных сечениях возникают центральные продольные силы N z (т.е. внутренняя сила, линия действия которой направлена по осиz), а остальные 5 силовых факторов равны нулю (Q x =Q y =M x =M y =M z =0).

    Правило знаков для N z: истинная растягивающая сила – «+», истинная сжимающая сила – «-».

    9. Центральное растяжение (сжатие) прямого бруса. Постановка и решение задачи об определении напряжений в поперечных сечениях бруса. Три стороны задачи.

    Постановка: Прямой брус из однородного материала, растянутый (сжатый) центральными продольными силами N. Определить напряжение, возникающее в поперечных сечениях бруса, деформации и перемещения поперечных сечений бруса в зависимости от координатzэтих сечений.

    10. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    .

    При центральном растяжении (сж.) бруса в поперечном направлении в сечении возникает только нормальное напряжение σ z , постоянное во всех точках поперечного сечения и равноеN z /F.
    , гдеEF– жёсткость бруса при растяжении (сжатии). Чем больше жёсткость бруса, тем меньше деформируется бус при одной и той же силе. 1/(EF) – податливость бруса при растяжении (сжатии).

    11. Центральное растяжение (сжатие) прямого бруса. Статически неопределимые системы. Раскрытие статической неопределимости. Влияние температурного и монтажного факторов. Привести примеры соответствующих расчётов.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    Если число линейно-независимых уравнений статики меньше числа неизвестных, входящих в систему этих уравнений, то задача по определению этих неизвестных становится статически неопределимой.
    (На сколько удлинится одна часть, на столько сожмётся вторая).

    Нормальные условия - 20º С.
    .f(σ,ε,tº,t)=0 – функциональная зависимость между 4 параметрами.

    12. Опытное изучение механических свойств материалов при растяжении (сжатии). Принцип Сен-Венана. Диаграмма растяжения образца. Разгрузка и повторное нагружение. Наклёп. Основные механические, прочностные и деформационные характеристики материала.

    Механические свойства материалов вычисляют с помощью испытательных машин, которые бывают рычажными и гидравлическими. В рычажной машине усилие создаётся при помощи груза, действующего на образец через систему рычагов, а в гидравлической – с помощью гидравлического давления.

    Принцип Сен-Венана: Характер распределения напряжения в поперечных сечениях достаточно удалённых (практически на расстояния, равные характерному поперечному размеру стержня) от места приложения нагрузок, продольных сил не зависит от способа приложения этих сил, если они имеют один и тот же статический эквивалент. Однако в зоне приложения нагрузок закон распределения напряжения может заметно отличаться от закона распределения в достаточно удалённых сечениях.

    Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой Р и удлинением Δlобразец получит остаточное удлинение.

    Если образец был нагружен на участке, на котором соблюдается закон Гука, а затем разгружен, то удлинение будет чисто упругим. При повторном нагружении пропадёт промежуточная разгрузка.

    Наклёп (нагартовка) – явление повышения упругих свойств материала в результате предварительного пластического деформирования.

    Предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука.

    Предел упругости – наибольшее напряжение, до которого материал не получает остаточных деформаций.

    Предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

    Предел прочности – максимальное напряжение, которое может выдержать образец, не разрушаясь.

    13. Физический и условный пределы текучести материалов при испытании образцов на растяжение, предел прочности. Допускаемые напряжения при расчёте на прочность центрально растянутого (сжатого) бруса. Нормативный и фактический коэффициенты запаса прочности. Привести числовые примеры.

    В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести принимается условно величина напряжения, при котором остаточная деформация ε ост =0,002 или 0,2%. В некоторых случаях устанавливается предел ε ост =0,5%.

    max|σ z |=[σ].
    ,n>1(!) – нормативный коэффициент запаса прочности.

    - фактический коэффициент запаса прочности.n>1(!).

    14. Центральное растяжение (сжатие) прямого бруса. Расчёты на прочность и жёсткость. Условие прочности. Условие жёсткости. Три типа задач при расчёте на прочность.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    max|σ z | растяж ≤[σ] растяж;max|σ z | сжатия ≤[σ] сжатия.

    15.Обобщённый закон Гука для трёхосного напряжённого состояния в точке. Относительная объёмная деформация. Коэффициент Пуассона и его предельные значения для однородного изотропного материала.

    ,
    ,
    . Сложив эти уравнения, получим выражение объёмной деформации:
    . Это выражение позволяет определить предельное значение коэффициента Пуассона для любого изотропного материала. Рассмотрим случай, когда σ x =σ y =σ z =р. В этом случае:
    . При положительном р величина θ должна быть также положительной, при отрицательном р изменение объёма будет отрицательным. Это возможно только в том случае, когда μ≤1/2. Следовательно, значение коэффициента Пуассона для изотропного материала не может превышать 0,5.

    16. Соотношение между тремя упругими постоянными для изотропного материала (без вывода формулы).

    ,
    ,
    .

    17. Исследование напряжённо-деформированного состояния в точках центрально-растянутого (сжатого) прямого бруса. Закон парности касательных напряжений.

    ,
    .

    - закон парности касательных напряжений.

    18. Центральное растяжение (сжатие) бруса из линейно-упругого материала. Потенциальная энергия упругой деформации бруса и её связь с работой внешних продольных сил, приложенных к брусу.

    А=U+K. (В результате работы накапливается потенциальная энергия деформированного телаU, кроме того, работа идёт на совершение скорости массе тела, т.е. преобразуется в кинетическую энергию).

    Если центральное растяжение (сжатие) бруса из линейно-упругого материала производится очень медленно, то скорость перемещения центра масс тела будет весьма малой. Такой процесс нагружения называется статическим. Тело в любой момент находится в состоянии равновесия. В этом случае А=U, и работа внешних сил целиком преобразуется в потенциальную энергию деформации.
    ,
    ,
    .

    "

    Подставим выражения закона Гука в уравнение совместности деформаций:

    Решая данное уравнение совместно с уравнениями равновесия, найдем неизвестные внутренние усилия в стержнях.

    ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ

    Напряжения в точке. Главные напряжения и главные площадки.

    Напряжения являются результатом взаимодействия частиц тела при его нагружении. Внешние сипы стремятся изменить взаимное расположение частиц, а возникающие при этом напряжения препятствуют их смещению. Расположенная в данной точке частица по-разному взаимодействует с каждой из соседних частиц. Поэтому в общем случае в одной и той же точке напряжения различны по различным направлениям.

    В сложных случаях действия сил на брус (в отличие от растяжения или сжатия) вопрос об определении наибольших напряжений, а также положения площадок, на которых они дей­ствуют, усложняется. Для решения этого вопроса приходится специально исследовать за­коны изменения напряжений при изменении положения площадок, проходящих через данную точку. Возникает проблема исследования напряженного состояния в точке деформируемого тела.

    Напряженное состояние в точке - совокупность напряжений (нормальных и касательных), действующих по всевозможным площадкам (сечениям), проведенным через эту точку.

    Изучение напряженного состояния дает возможность анализировать прочность материала для любого случая нагружения тела.

    Исследуя напряженное состояние в данной точке деформируемого тела, в ее окрестно­сти выделяют бесконечно малый (элемен­тарный) параллелепипед, ребра которого направлены вдоль соответствующих координатных осей. При действии на тело внешних сил на каждой из граней элемен­тарного параллелепипеда возникают на­пряжения, которые представляют нормаль­ными и касательными напряжениями проекциями полных напряжений на коор­динатные оси (рис. 5.1).

    Нормальные напряжения обозначают буквой σ с индексом, соответствующим нормали к площадке, на которой они действуют. Касательные напряже­ния обозначают буквой τ с двумя индексами: первый соответствует нормали к площадке, а второй - направлению самого напряжения (или наоборот).

    Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действует девять компонентов напря­жения. Их можно записать в виде следующей квадратной матрицы:

    σ х τ ху τ х z

    Т σ = τ у x σ у τ у z

    τ zx τ z у σ z

    Эта совокупность напряжений называется тензором напряжений .

    Тензор напряжений полностью описывает напряженное состояние в точке, то есть если известен тензор напряжений в данной точке, то можно найти напряжения на любой из площадок, проходящих через данную точку (заметим, что тензор представляет собой особый математический объект, компоненты которого при повороте координатных осей подчиняются специфическим правилам тензорного преобразования, при этом тензорное исчисление составляет отдельный раздел высшей математики и здесь не рассматривается).

    Используем принятое правило знаков для напряжений в общем виде. Нормальное напряжение σ считается положительным, если совпадает по направлению с внешней нормалью к площадке, касательные напряжения τ считаются положительными, если вектор касательных напряжений следует поворачивать против хода часовой стрелки до совпадения с внешней нормалью (рис. 5.2). Отрицательными считаются напряжения обратных направлений.

    Не все девять компонентов напряжений, действующих на гранях параллеле­пипеда, независимые (несвязанные друг с другом). В этом легко убедится, составив уравнения равновесия элемента в отношении его вращений относи­тельно координатных осей. Записав уравнения моментов от сил, действую­щих по граням параллелепипеда, и пренебрегая их изменением при переходе от одной грани к другой ей параллельной, получим, что

    τ ху = τ ух, τ х z = τ z х, τ yz = τ zy (5.1)

    Данные равенства называют законом парности касательных на­пряжений.

    Закон парности касательных напряжений: по двум взаимно перпендикуляр­ным площадкам касательные напряжения, перпендикулярные линии пересе­чения этих площадок, равны между собой.

    Закон парности касательных напряжений устанавливает зависимость между величинами и направлениями пар касательных напряжений, действующих по взаимно перпендикулярным площадкам элементарного параллелепипеда.

    В окрестности исследуемой точки можно выделить бесконечное множество взаимно перпендикулярных площадок. В том числе можно найти и такие площадки, на которых действуют только нормальные напряжения, а каса­тельные напряжения равны нулю. Такие площадки называют главными (более точно – площадки главных напряжений ).

    Рассмотрим две взаимно перпендикулярные площадки с касательными напряжениями τ ху и τ ух. Согласно закону парности касательных напряжений эти напряжения равны. Поэтому, если площадку с напряжением τ ху поворачивать до совпадения с площадкой с напряжением τ ух, то обязательно найдется такое положение площадки, когда касательное напряжение τ = 0.

    Главные площадки - три взаимно перпендикулярные площадки в окрестно­сти исследуемой точки, на которых касательные напряжения равны нулю.

    Главные напряжения - нормальные напряжения, действующие по главным площадкам (то есть площадкам, на которых отсутствуют касательные напряжения).

    Главные напряжения обозначаются σ 1 , σ 2 , σ 3 , причем σ 1 ≥ σ 2 ≥ σ 3 .

    На главных площадках нормальные напряжения (главные напряжения) принимают свои экстремальные значения – максимум σ 1 , минимум σ 3 .

    Тензор напряжений, записанный через главные напряжения, принимает наиболее простой вид:

    Т σ = 0 σ 2 0

    В зависимости от того, сколько главных напряжений действует в окрестности данной точки, различают три вида напряженного состояния:

    1) линейное (одноосное) - если одно главное напряжение отлично от нуля, а два других равны нулю (σ 1 ≠0, σ 2 = 0, σ 3 = 0);

    2) плоское (двухосное) - если два главных напряжения отличны от нуля, а одно равно нулю (σ 1 ≠0, σ 2 ≠ 0, σ 3 = 0);

    3) объемное (трехосное) - если все три главных напряжения отличны от нуля (σ 1 ≠0, σ 2 ≠ 0, σ 3 ≠ 0).

    Линейное напряженное состояние

    Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 5.3, а).

    Элементы, находящиеся в линейном напряженном состоянии, можно выделить в окрест­ности некоторых точек стержня, работающего на изгиб, иногда - при сложном нагружении, но главным образом на растяжение или сжатие.

    Рассмотрим стержень, испытывающий простое растяжение (рис.5.4). Нормальные напряжения в его по­перечных сечениях определяются следующим образом:

    Касательные напряжения здесь равны нулю. Следовательно, эти сечения являются главными площадками (σ 1 = σ 0).

    Перейдем теперь к определению напряжений на неглавных, наклонных площадках. Выделим площадку, нормаль к которой составляет с осью стержня угол α (рис. 5.5). Проведенную таким образом наклонную площадку будем обозначать α -площадкой, а действующие на ней полные, нор­мальные и касательные напряжения - р α , σ α, τ α соответственно. При этом площадь α -площадки (А α)связана с площадью поперечного сечения стержня (А 0 )следующим образом: А α = А 0 /cos α .

    Для определения напряжений воспользуемся методом мысленных сечений. Считая, что наклонная площадка рассекла стержень на две части, отбросим одну из них (верхнюю) и рассмотрим равновесие оставшейся (нижней). Осевая сила (N ) в сечении представляет собой равнодействующую полных на­пряжений р α . Следовательно,

    N = р α · А α .

    р α = = cos α = σ 0 cos α.

    Нормальные и касательные напряжения определим, проецируя полное на­пряжение на нормаль и плоскость α -площадки соответственно:

    σ α = р α · cos α;

    τ α = р α · sin α,

    или, учитывая, что р 0 = σ 0 cos α;

    σ α = σ 0 cos 2 α;

    τ α = 0,5σ 0 sin 2α .

    Из анализа формул видно, что:

    1) На площадках, перпендикулярных оси, касательные напряжения равны нулю (такие площадки называются главными , а действующие на них нормальные напряжения – главными нормальными напряжениями ), т.е. при α = 0 в поперечных сечениях стержня τ α = 0, σ α = σ 0 (σ 1 = σ 0 , σ 2 = 0, σ 3 = 0);

    2) На площадках, параллельных оси, никаких напряжений нет, поэтому это также главная площадка, т.е. при α = π / 2 в поперечных сечениях стержня τ α = 0, σ α = 0;

    3) Наибольшие нормальные напряжения действуют в поперечных сечениях, а наибольшие касательные – на площадках, наклоненных к ним под углом 45°, т.е. при α = ± π / 4 в поперечных сечениях стержня возникают максимальные касательные напряжения τ α = τ max = σ 0 / 2 (нормальные напряжения σ α = σ 0 / 2).

    Напряжения на наклонных площадках при плоском напряженном состоянии

    Плоским или двухосным называется напряженное состояние, при котором одно из трех главных напряжений равно нулю (рис. 5.3, б).

    Плоское (двухосное) напряженное состояние встречается при кручении, изгибе и сложном сопротивлении и является одним из наиболее распространенных видов напряженного со­стояния.

    Определим напряжения на наклонных пло­щадках при плоском напряженном состоя­нии. Рассмотрим элементарный параллеле­пипед, грани которого являются главными площадками (рис. 5.6). По ним действуют положи­тельные напряжения σ 1 и σ 2 , а третье глав­ное напряжение σ 3 = 0.

    Проведем сечение, нормаль к которому по­вернута на угол α от большего из двух глав­ных напряжений (σ 1) против часовой стрел­ки (положительное направление α ). Напря­жения σ α и τ α на этой площадке будут вызываться как действием σ 1 . так и действием σ 2 .

    Запишем правила знаков . Будем считать положительными следующие направления напряжений и углов: нормальные напряжения σ - растягивающие: касательные напряжения τ - вращающие элемент по часовой стрелке: угол α - против часовой стрелки от наибольшего из главных напряжений (α < 45°).

    Плоское напряженное состояние может быть представле­но как наложение (суперпозиция) двух взаимноперпендикулярных (ортогональных) одноосных напряженных состояний (рис. 5.7). При этом:

    σ α = σ α ΄ + σ α ΄΄,

    τ α = τ α ΄ + τ α ΄΄,

    где σ α ΄, τ α ΄-напряжения, вызванные действием σ 1 ;

    σ α ΄΄, τ α ΄΄ - напряжения, вызванные действием σ 2 .

    Напряжения при одноосном напряженном состоянии (от действия Ci) связаны между собой как

    σ α ΄ = σ 1 cos 2 α;

    τ α ΄ = 0,5 σ 1 sin 2α .

    Напряжения σ α ΄΄, τ α ΄΄, вызванные действием σ 2 , можно найти аналогично, но при этом необходимо учесть, что вместо угла α в формулы необходимо под­ставить угол β = - (90°- α ) - угол между α -площадкой и напряжением σ 2 .Отсюда получим

    σ α ΄΄ = σ 2 ∙ cos 2 [- (90°- α )] → σ α ΄΄ = σ 2 sin 2 α ;

    τ α ΄΄ = 0,5 σ 2 sin 2[- (90°- α )] → τ α ΄΄ = - 0,5 σ 2 sin2 α ;

    Окончательно можем записать

    σ α = σ 1 cos 2 α + σ 2 sin 2 α = + cos2α ; (5.2)

    τ α = 0,5 σ 1 sin 2α - 0,5 σ 2 sin2 α = sin2α . (5.3)

    Напряженное и деформированное состояния упругого тела. Связь между напряжениями и деформациями

    Понятие о напряжении тела в данной точке. Нормальные и касательные напряжения

    Внутренние силовые факторы, возникающие при нагружении упругого тела, характеризуют состояние того или иного сечения тела, но не дают ответа на вопрос о том, какая именно точка поперечного сечения является наиболее нагруженной, или, как говорят, опасной точкой . Поэтому необходимо ввести в рассмотрение какую-то дополнительную величину, характеризующую состояние тела в данной точке.

    Если тело, к которому приложены внешние силы, находится в равновесии, то в любом его сечении возникают внутренние силы сопротивления. Обозначим через внутреннее усилие, действующее на элементарную площадку , а нормаль к этой площадке через тогда величина

    (3.1)

    называется полным напряжением.

    В общем случае полное напряжение не совпадает по направлению с нормалью к элементарной площадке, поэтому удобнее оперировать его составляющими вдоль координатных осей -

    Если внешняя нормаль совпадает с какой-либо координатной осью, например, с осью Х , то составляющие напряжения примут вид при этом составляющая оказывается перпендикулярной сечению и называется нормальным напряжением , а составляющие будут лежать в плоскости сечения и называются касательными напряжениями .

    Чтобы легко различать нормальные и касательные напряжения обычно применяют другие обозначения: - нормальное напряжение, - касательное.

    Выделим из тела, находящегося под действием внешних сил, бесконечно малый параллелепипед, грани которого параллельны координатным плоскостям, а ребра имеют длину . На каждой грани такого элементарного параллелепипеда действуют по три составляющие напряжения, параллельные координатным осям. Всего на шести гранях получим 18 составляющих напряжений.

    Нормальные напряжения обозначаются в виде , где индекс обозначает нормаль к соответствующей грани (т.е. может принимать значения ). Касательные напряжения имеют вид ; здесь первый индекс соответствует нормали к той площадке, на которой действует данное касательное напряжение, а второй указывает ось, параллельно которой это напряжение направлено (рис.3.1).

    Рис.3.1. Нормальные и касательные напряжения

    Для этих напряжений принято следующее правило знаков . Нормальное напряжение считается положительным при растяжении, или, что то же самое, когда оно совпадает с направлением внешней нормали к площадке, на которой действует. Касательное напряжение считается положительным, если на площадке, нормаль к которой совпадает с направлением параллельной ей координатной оси, оно направлено в сторону соответствующей этому напряжению положительной координатной оси.

    Составляющие напряжений являются функциями трех координат. Например, нормальное напряжение в точке с координатами можно обозначать

    В точке, которая отстоит от рассматриваемой на бесконечно малом расстоянии, напряжение с точностью до бесконечно малых первого порядка можно разложить в ряд Тейлора:

    Для площадок, которые параллельны плоскости изменяется только координата х , а приращения Поэтому на грани параллелепипеда, совпадающей с плоскостью нормальное напряжение будет , а на параллельной грани, отстоящей на бесконечно малом расстоянии , - Напряжения на остальных параллельных гранях параллелепипеда связаны аналогичным образом. Следовательно, из 18 составляющих напряжения неизвестными являются только девять.

    В теории упругости доказывается закон парности касательных напряжений , согласно которому по двум взаимно перпендикулярным площадкам составляющие касательных напряжений, перпендикулярные линии пересечения этих площадок, равны друг другу:

    Можно показать, что напряжения (3.3) не просто характеризуют напряженное состояние тела в данной точке, но определяют его однозначно. Совокупность этих напряжений образует симметричную матрицу, которая называется тензором напряжений :

    (3.4)

    Так как в каждой точке будет свой тензор напряжений, то в теле имеется поле тензоров напряжений.

    При умножении тензора на скалярную величину получится новый тензор, все компоненты которого в раз больше компонентов исходного тензора.