Определение интенсивности отказов. Количественные характеристики надежности. Исключительно полезная информация

1.1 Вероятность безотказной работы

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации, в пределах заданной наработки не произойдет ни одного отказа.
Вероятность безотказной работы обозначается как P (l ) , которая определяется по формуле (1.1):

где N 0 - число элементов в начале испытания; r (l ) - число отказов элементов к моменту наработки. Следует отметить, что чем больше величина N 0 , тем с большей точностью можно рассчитать вероятность P (l).
В начале эксплуатации исправного локомотива P (0) = 1, так как при пробеге l = 0 вероятность того, что ни один элемент не откажет, принимает максимальное значение - 1. С ростом пробега l вероятность P (l ) будет уменьшаться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность безотказной работы будет стремиться к нулю P (l →∞) = 0. Таким образом в процессе наработки величина вероятности безотказной работы изменяется в пределах от 1 до 0. Характер изменения вероятности безотказной работы в функции пробега показан на рис. 1.1.

Рис.2.1. График изменения вероятности безотказной работы P(l) в зависимости от наработки

Основными достоинствами использования данного показателя при расчетах является два фактора: во-первых, вероятность безотказной работы охватывает все факторы, влияющие на надежность элементов, позволяя достаточно просто судить о его надежности, т.к. чем больше величина P (l ), тем выше надежность; во-вторых, вероятность безотказной работы может быть использована в расчетах надежности сложных систем, состоящих из более чем одного элемента.

1.2 Вероятность отказа

Вероятностью отказа называют вероятность того, что при определенных условиях эксплуатации, в предела х заданной наработки произойдет хотя бы один отказ.
Вероятность отказа обозначается как Q (l ), которая определяется по формуле (1.2):

В начале эксплуатации исправного локомотива Q (0) = 0, так как при пробеге l = 0 вероятность того, что хотя бы один элемент откажет, принимает минимальное значение - 0. С ростом пробега l вероятность отказа Q (l ) будет увеличиваться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность отказа будет стремиться к единице Q (l →∞ ) = 1. Таким образом в процессе наработки величина вероятности отказа изменяется в пределах от 0 до 1. Характер изменения вероятности отказа в функции пробега показан на рис. 1.2. Вероятность безотказной работы и вероятность отказа являются событиями противоположными и несовместимыми.

Рис.2.2. График изменения вероятности отказа Q(l) в зависимости от наработки

1.3 Частота отказов

Частота отказов - это отношение числа элементов в единицу времени или пробега отнесенного к первоначальному числу испытуемых элементов. Другими словами частота отказов является показателем, характеризующим скорость изменения вероятности отказов и вероятности безотказной работы по мере роста длительности работы.
Частота отказов обозначается как и определяется по формуле (1.3):

где - количество отказавших элементов за промежуток пробега .
Данный показатель позволяет судить по его величине о числе элементов, которые откажут на каком-то промежутке времени или пробега, также по его величине можно рассчитать количество требуемых запасных частей.
Характер изменения частоты отказов в функции пробега показан на рис. 1.3.


Рис. 1.3. График изменения частоты отказов в зависимости от наработки

1.4 Интенсивность отказов

Интенсивность отказов представляет собой условную плотность возникновения отказа объекта, определяемую для рассматриваемого момента времени или наработки при условии, что до этого момента отказ не возник. Иначе интенсивность отказов - это отношение числа отказавших элементов в единицу времени или пробега к числу исправно работающих элементов в данный отрезок времени.
Интенсивность отказов обозначается как и определяется по формуле (1.4):

где

Как правило, интенсивность отказов является неубывающей функцией времени. Интенсивность отказов обычно применяется для оценки склонности к отказам в различные моменты работы объектов.
На рис. 1.4. представлен теоретический характер изменения интенсивности отказов в функции пробега.

Рис. 1.4. График изменения интенсивности отказов в зависимости от наработки

На графике изменения интенсивности отказов, изображенном на рис. 1.4. можно выделить три основных этапа отражающих процесс экс-плуатации элемента или объекта в целом.
Первый этап, который также называется этапом приработки, характеризуется увеличением интенсивности отказов в начальный период эксплуатации. Причиной роста интенсивности отказов на данном этапе являются скрытые дефекты производственного характера.
Второй этап, или период нормальной работы, характеризуется стремлением интенсивности отказов к постоянному значению. В течение этого периода могут возникать случайные отказы, в связи с появлением внезапной концентрации нагрузки, превышающей предел прочности элемента.
Третий этап, так называемый период форсированного старения. Характеризуется возникновением износовых отказов. Дальнейшая эксплуатация элемента без его замены становится экономически не рациональной.

1.5 Средняя наработка до отказа

Средняя наработка до отказа - это средний пробег безотказной работы элемента до отказа.
Средняя наработка до отказа обозначается как L 1 и определяется по формуле (1.5):

где l i - наработка до отказа элемента; r i - число отказов.
Средняя наработка до отказа может быть использована для предварительного определения сроков ремонта или замены элемента.

1.6 Среднее значение параметра потока отказов

Среднее значение параметра потока отказов характеризует среднюю плотность вероятности возникновения отказа объекта, определяемая для рассматриваемого момента времени.
Среднее значение параметра потока отказов обозначается как W ср и определяется по формуле (1.6):

1.7 Пример расчета показателей безотказности

Исходные данные.
В течение пробега от 0 до 600 тыс. км., в локомотивном депо произведен сбор информации по отказам ТЭД. При этом количество исправных ТЭД в начале периода эксплуатации составляло N0 = 180 шт. Суммарное количество отказавших ТЭД за анализируемый период составило ∑r(600000) = 60. Интервал пробега принять равным 100 тыс. км. При этом количество отказавших ТЭД по каждому участку составило: 2, 12, 16, 10, 14, 6.

Требуется.
Необходимо рассчитать показатели безотказности и построить их зависимости изменения во времени.

Сначала необходимо заполнить таблицу исходных данных так, как это показано в табл. 1.1.

Таблица 1.1.

Исходные данные к расчету
, тыс. км 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60

Первоначально по уравнению (1.1) определим для каждого участка пробега величину вероятности безотказной работы. Так, для участка от 0 до 100 и от 100 до 200 тыс. км. пробега вероятность безотказной работы составит:

Произведем расчет частоты отказов по уравнению (1.3).

Тогда интенсивность отказов на участке 0-100 тыс.км. будет равна:

Аналогичным образом определим величину интенсивности отказов для интервала 100-200 тыс. км.

По уравнениям (1.5 и 1.6) определим среднюю наработку до отказа и среднее значение параметра потока отказов.

Систематизируем полученные результаты расчета и представим их в виде таблицы (табл. 1.2.).

Таблица 1.2.

Результаты расчета показателей безотказности
, тыс.км. 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60
P(l) 0,989 0,922 0,833 0,778 0,7 0,667
Q(l) 0,011 0,078 0,167 0,222 0,3 0,333
10 -7 , 1/км 1,111 6,667 8,889 5,556 7,778 3,333
10 -7 , 1/км 1,117 6,977 10,127 6,897 10,526 4,878

Приведем характер изменения вероятности безотказной работы ТЭД в зависимости от пробега (рис. 1.5.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности безотказной работы примет максимальное значение - 1.

Рис. 1.5. График изменения вероятности безотказной работы в зависимости от наработки

Приведем характер изменения вероятности отказа ТЭД в зависимости от пробега (рис. 1.6.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности отказа примет минимальное значение - 0.

Рис. 1.6. График изменения вероятности отказа в зависимости от наработки

Приведем характер изменения частоты отказов ТЭД в зависимости от пробега (рис. 1.7.).

Рис. 1.7. График изменения частоты отказов в зависимости от наработки

На рис. 1.8. представлена зависимость изменения интенсивности отказов от наработки.

Рис. 1.8. График изменения интенсивности отказов в зависимости от наработки

2.1 Экспоненциальный закон распределения случайных величин

Экспоненциальный закон достаточно точно описывает надежность узлов при внезапных отказах, имеющих случайный характер. Попытки применить его для других типов и случаев отказов, особенно постепенных, вызванных износом и изменением физико-химических свойств элементов показали его недостаточную приемлемость.

Исходные данные.
В результате испытания десяти топливных насосов высокого давления получены наработки их до отказа: 400, 440, 500, 600, 670, 700, 800, 1200, 1600, 1800 ч. Предполагая, что наработка до отказа топливных насосов подчиняется экспоненциальному закону распределения.

Требуется.
Оценить величину интенсивности отказов, а также рассчитать вероятность безотказной работы за первые 500 ч. и вероятность отказа в промежутке времени между 800 и 900 ч. работы дизеля.

Во-первых, определим величину средней наработки топливных насосов до отказа по уравнению:

Затем рассчитываем величину интенсивности отказов:

Величина вероятности безотказной работы топливных насосов при наработке 500 ч составит:

Вероятность отказа в промежутке между 800 и 900 ч. работы насосов составит:

2.2 Закон распределения Вэйбулла-Гнеденко

Закон распределения Вейбулла-Гнеденко получил широкое распространение и используется применительно к системам, состоящим из рядов элементов, соединенных последовательно с точки зрения обеспечения безотказности системы. Например, системы, обслуживающие дизель-генераторную установку: смазки, охлаждения, питания топливом, воздухом и т.д.

Исходные данные.
Время простоя тепловозов в неплановых ремонтах по вине вспомогательного оборудования подчиняется закону распределения Вейбулла-Гнеденко с параметрами b=2 и a=46.

Требуется.
Необходимо определить вероятность выхода тепловозов из неплановых ремонтов после 24 ч. простоя и время простоя, в течение которого работоспособность будет восстановлена с вероятностью 0,95.

Найдем вероятность восстановления работоспособности локомотива после простоя его в депо в течение суток по уравнению:

Для определения времени восстановления работоспособности локомотива с заданной величиной доверительной вероятности также используем выражение:

2.3 Закон распределения Рэлея

Закон распределения Рэлея используется в основном для анализа работы элементов, имеющих ярко выраженный эффект старения (элементы электрооборудования, различного рода уплотнения, шайбы, прокладки, изготовленные из резиновых или синтетических материалов).

Исходные данные.
Известно, что наработки контакторов до отказа по параметрам старения изоляции катушек можно описать функцией распределения Рэлея с параметром S = 260 тыс.км.

Требуется.
Для величины наработки 120 тыс.км. необходимо определить вероятность безотказной работы, интенсивность отказов и среднюю наработку до первого отказа катушки электромагнитного контактора.

3.1 Основное соединение элементов

Система, состоящая из нескольких независимых элементов, связанных функционально таким образом, что отказ любого из них вызывает отказ системы, отображается расчетной структурной схемой безотказной работы с последовательно соединенными событиями безотказной работы элементов.

Исходные данные.
Нерезервированная система состоит из 5 элементов. Интенсивности их отказов соответственно равны 0,00007; 0,00005; 0,00004; 0,00006; 0,00004 ч-1

Требуется.
Необходимо определить показатели надежности системы: интенсивность отказов, среднее время наработки до отказа, вероятность безотказной работы, частота отказов. Показатели надежности P(l) и a(l) получить в интервале от 0 до 1000 часов с шагом в 100 часов.

Вычислим интенсивность отказа и среднюю наработку до отказа по следующим уравнениям:

Значения вероятности безотказной работы и частоты отказов получим, используя уравнения приведенные к виду:

Результаты расчета P(l) и a(l) на интервале от 0 до 1000 часов работы представим в виде табл. 3.1.

Таблица 3.1.

Результаты расчета вероятности безотказной работы и частоты отказов системы на интервале времени от 0 до 1000 ч.
l , час P(l) a(l) , час -1
0 1 0,00026
100 0,974355 0,000253
200 0,949329 0,000247
300 0,924964 0,00024
400 0,901225 0,000234
500 0,878095 0,000228
600 0,855559 0,000222
700 0,833601 0,000217
800 0,812207 0,000211
900 0,791362 0,000206
1000 0,771052 0,0002

Графическая иллюстрация P(l) и a(l) на участке до средней наработки до отказа представлена на рис. 3.1, 3.2.

Рис. 3.1. Вероятность безотказной работы системы.

Рис. 3.2. Частота отказов системы.

3.2 Резервное соединение элементов

Исходные данные.
На рис. 3.3 и 3.4 показаны две структурные схемы соединения элементов: общего (рис. 3.3) и поэлементного резервирования (рис. 3.4). Вероятности безотказной работы элементов соответственно равны P1(l) = P ’1(l) = 0,95; P2(l) = P’2(l) = 0,9; P3(l) = P ’3(l) = 0,85.

Рис. 3.3. Схема системы с общим резервированием.

Рис. 3.4. Схема системы с поэлементным резервированием.

Вероятность безотказной работы блока из трех элементов без резервирования рассчитаем по выражению:

Вероятность безотказной работы той же системы при общем резервировании (рис. 3.3) составит:

Вероятности безотказной работы каждого из трех блоков при поэлементном резервировании (рис. 3.4) будут равны:

Вероятность безотказной работы системы при поэлементном резервировании составит:

Таким образом, поэлементное резервирование дает более существенное увеличение надежности (вероятность безотказной работы возросла с 0,925 до 0,965, т.е. на 4%).

Исходные данные.
На рис. 3.5 представлена система с комбинированным соединением элементов. При этом вероятности безотказной работы элементов имеют следующие значения: P1=0,8; Р2=0,9; Р3=0,95; Р4=0,97.

Требуется.
Необходимо определить надежность системы. Также необходимо определить надежность этой же системы при условии, что резервные элементы отсутствуют.

Рис.3.5. Схема системы при комбинированном функционировании элементов.

Для расчета в исходной системе необходимо выделить основные блоки. В представленной системе их три (рис. 3.6). Далее рассчитаем надежность каждого блока в отдельности, а затем найдем надежность всей системы.

Рис. 3.6. Сблокированная схема.

Надежность системы без резервирования составит:

Таким образом, система без резервирования является на 28% менее надежной, чем система с резервированием.

КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ НАДЕЖНОСТИ


Критерии и количественные характеристики надежности

Критерием надежности называется признак, по которому можно количественно оценить надежность различных устройств.

К числу наиболее широко применяемых критериев надежности относятся:
- вероятность безотказной работы в течение определенного времени P(t);
- средняя наработка до первого отказа T ср;
- наработка на отказ t ср;


- параметр потока отказов w (t);
- функция готовности K г (t);
- коэффициент готовности K г.

Характеристикой надежности следует называть количественное значение критерия надежности конкретного устройства.

Выбор количественных характеристик надежности зависит от вида объекта.

Критерии надежности невосстанавливаемых объектов

Рассмотрим следующую модель работы устройства.

Пусть в работе (на испытании) находится N 0 элементов и пусть работа считается законченной, если все они отказали. Причем вместо отказавших элементов отремонтированные не ставятся. Тогда критериями надежности данных изделий являются:
- вероятность безотказной работы P(t);
- частота отказов f(t) или a(t);
- интенсивность отказов l (t);
- средняя наработка до первого отказа T ср.

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени или в пределах заданной наработки не произойдет ни одного отказа.

Согласно определению
P(t) = P(T>t),(4.2.1)
где T - время работы элемента от его включения до первого отказа; t- время, в течение которого определяется вероятность безотказной работы.

Вероятность безотказной работы по статистическим данным об отказах оценивается выражением
(t) = / N 0 ,(4.2.2)
где N 0 - число элементов в начале работы (испытаний); n(t) - число отказавших элементов за время t; (t) - статистическая оценка вероятности безотказной работы. При большом числе элементов (изделий) N 0 статистическая оценка (t) практически совпадает с вероятностью безотказной работы P(t). На практике иногда более удобной характеристикой является вероятность отказа Q(t).

Вероятностью отказа называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени возникает хотя бы один отказ. Отказ и безотказная работа являются событиями несовместными и противоположными, поэтому
Q(t)=P(T £ t), (t)=n(t)/N 0 , Q(t)=1-P(t).(4.2.3)

Частотой отказов по статистическим данным называется отношение числа отказавших элементов в единицу времени к первоначальному числу работающих (испытываемых) при условии, что все вышедшие из строя изделия не восстанавливаются.

Согласно определению

(t) = n(D t) / N 0 D t,(4.2.4)
где n(D t) - число отказавших элементов в интервале времени от (t‑D t)/2 до (t+D t)/2.

Частота отказов есть плотность вероятности (или закон распределения) времени работы изделия до первого отказа. Поэтому

P(t) = 1 - Q(t),P(t) = 1 - .(4.2.5)

Интенсивностью отказов по статистическим данным называется отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени.

Согласно определению

(t) = n(D t) / (N ср D t),(4.2.6)
где N ср = (N i + N i+1) / 2 - среднее число исправно работающих элементов в интервале D t; N i - число изделий, исправно работающих в начале интервала D t; N i+1 - число элементов исправно работающих в конце интервала D t.

Вероятностная оценка характеристики l (t) находится из выражения
l (t) = f(t) / P(t).(4.2.7)

Интенсивность отказов и вероятность безотказной работы связаны между собой зависимостью

P(t) = еxp .(4.2.8)

Средней наработкой до первого отказа называется математическое ожидание времени работы элемента до отказа.

Как математическое ожидание, T ср вычисляется через частоту отказов (плотность распределения времени безотказной работы):

M[t] = T cр = .(4.2.9)

Так как t положительно и P(0)=1, а P(¥ )=0, то
T cр = .4.2.10)

По статистическим данным об отказах средняя наработка до первого отказа вычисляется по формуле

.(4.2.11)

где t i - время безотказной работы i-го элемента; N 0 - число исследуемых элементов.

Как видно из формулы (4.2.11), для определения средней наработки до первого отказа необходимо знать моменты выхода из строя всех испытуемых элементов. Поэтому для вычисления средней наработки на отказ пользоваться указанной формулой неудобно. Имея данные о количестве вышедших из строя элементов n i в каждом i-м интервале времени, среднюю наработку до первого отказа лучше определять из уравнения

.(4.2.12)

В выражении (4.2.12) t срi и m находятся по следующим формулам:
t срi = (t i-1 + t i)/2, m = t k /
D t,
где t i-1 - время начала i-го интервала; t i - время конца i-го интервала; t k - время, в течение которого вышли из строя все элементы; D t=t i‑ 1 ‑ t i - интервал времени.

Из выражений для оценки количественных характеристик надежности видно, что все характеристики, кроме средней наработки до первого отказа, являются функциями времени. Конкретные выражения для практической оценки количественныххарактеристик надежности устройств рассмотрены в разделе "Законы распределения отказов".

Рассмотренные критерии надежности позволяют достаточно полно оценить надежность невосстанавливаемых изделий. Они также позволяют оценить надежность восстанавливаемых изделий до первого отказа . Наличие нескольких критериев вовсе не означает, что всегда нужно оценивать надежность элементов по всем критериям.

Наиболее полно надежность изделий характеризуется частотой отказов f(t) или a(t). Это объясняется тем, что частота отказов является плотностью распределения, а поэтому несет в себе всю информацию о случайном явлении - времени безотказной работы.

Средняя наработка до первого отказа является достаточно наглядной характеристикой надежности. Однако применение этого критерия для оценки надежности сложной системы ограничено в тех случаях, когда:

Время работы системы гораздо меньше среднего времени безотказной работы;
- закон распределения времени безотказной работы не однопараметрический и для достаточно полной оценки требуются моменты высших порядков;
- система резервированная;
- интенсивность отказов не постоянная;
- время работы отдельных частей сложной системы разное.

Интенсивность отказов - наиболее удобная характеристика надежности простейших элементов, так как она позволяет более просто вычислять количественные характеристики надежности сложной системы.

Наиболее целесообразным критерием надежности сложной системы является вероятность безотказной работы . Это объясняется следующими особенностями вероятности безотказной работы:
- она входит в качестве сомножителя в другие, более общие характеристики системы, например, в эффективность и стоимость;
- характеризует изменение надежности во времени;
- может быть получена сравнительно просто расчетным путем в процессе проектирования системы и оценена в процессе ее испытания.

Рассмотрим следующую модель работы.

Пусть в работе находится N элементов и пусть отказавшие элементы немедленно заменяются исправными (новыми или отремонтированными). Если не учитывать времени, потребного на восстановление системы, то количественными характеристиками надежности могут быть параметр потока отказов w (t) и наработка на отказ t ср.

Параметром потока отказов
называется отношение числа отказавших изделий в единицу времени к числу испытываемых при условии, что все вышедшие из строя изделия заменяются исправными (новыми или отремонтированными).

Статистическим определением служит выражение
(t) = n(D t) / N D t,(4.2.13)
где n(D t) - число отказавших образцов в интервале времени от t‑D t/2 до t+D t/2; N - число испытываемых элементов; D t - интервал времени.

Параметр потока отказов и частота отказов для ординарных потоков с ограниченным последействием связаны интегральным уравнением Вольтера второго рода
w (t) = f(t)+ .(4.2.14)

По известной f(t) можно найти все количественные характеристики надежности невосстанавливаемых изделий. Поэтому (2.14) является основным уравнением, связывающим количественные характеристики надежности невосстанавливаемых и восстанавливаемых элементов при мгновенном восстановлении.

Уравнение (4.2.14) можно записать в операторной форме:
, .(4.2.15)
Соотношения (4.2.15) позволяют найти одну характеристику через другую, если существуют преобразования Лапласа функций f(s) и w (s) и обратные преобразования выражений (4.2.15).

Параметр потока отказов обладает следующими важными свойствами:
1) для любого момента времени независимо от закона распределения времени безотказной работы параметр потока отказов больше, чем частота отказов, т.е. w (t)>f(t);
2) независимо от вида функций f(t) параметр потока отказов w (t) при t®¥ стремится к 1/T ср. Это важное свойство параметра потока отказов означает, что при длительной эксплуатации ремонтируемого изделия поток его отказов независимо от закона распределения времени безотказной работы становится стационарным. Однако это вовсе не означает, что интенсивность отказов есть величина постоянная;
3) если l (t) - возрастающая функция времени, то l (t)>w (t)>f(t), если l (t) - убывающая функция, то w (t)>l (t)>f(t);
4) при l (t)¹ const параметр потока отказов системы не равен сумме параметров потока отказов элементов, т.е.
w с (t) .(4.2.16)

Это свойство параметра потока отказов позволяет утверждать, что при вычислении количественных характеристик надежности сложной системы нельзя суммировать имеющиеся в настоящее время значения интенсивности отказов элементов, полученных по статистическим данным об отказах изделий в условиях эксплуатации, так как указанные величины являются фактически параметрами потока отказов;

5) при l (t)=l =const параметр потока отказов равен интенсивности отказов w (t)=l (t)=l .

Из рассмотрения свойств интенсивности и параметра потока отказов видно, что эти характеристики различны.

В настоящее время широко используются статистические данные об отказах, полученные в условиях эксплуатации оборудования. При этом они часто обрабатываются таким образом, что приводимые характеристики надежности являются не интенсивностью отказов, а параметром потока отказов w (t). Это вносит ошибки при расчетах надежности. В ряде случаев они могут быть значительными.

Для получения интенсивности отказов элементов из статистических данных об отказах ремонтируемых систем необходимо воспользоваться формулой (4.2.6), для чего необходимо знать предысторию каждого элемента технологической схемы. Это может существенно усложнить методику сбора статистических данных об отказах. Поэтому целесообразно определять l (t) по параметру потока отказов w (t). Методика расчета сводится к следующим вычислительным операциям:
- по статистическим данным об отказах элементов ремонтируемых изделий и по формуле (4.2.13) вычисляется параметр потока отказов и строится гистограмма w i (t);
- гистограмма заменяется кривой, которая аппроксимируется уравнением;
- находится преобразование Лапласа w i (s) функции w i (t);
- по известной w i (s) на основании (4.2.15) записывается преобразование Лапласа f i (s) частоты отказов;
- по известной f i (s) находится обратное преобразование частоты отказов f i (t);
- находится аналитическое выражение для интенсивности отказов по формуле
;(4.2.17)
- строится график l i (t).

Если имеется участок, где l i (t)=l i =const, то постоянное значение интенсивности отказов принимается для оценки вероятности безотказной работы. При этом считается справедливым экспоненциальный закон надежности.

Приведенная методика не может быть применена, если не удается найти по f(s) обратное преобразование частоты отказов f(t). В этом случае приходится применять приближенные методы решения интегрального уравнения (4.2.14).

Наработкой на отказ
называется среднее значение времени между соседними отказами.
Эта характеристика определяется по статистическим данным об отказах по формуле ,(4.2.18)
где t i - время исправной работы элемента между (i-1)-м и i-м отказами; n - число отказов за некоторое время t.

Из формулы (4.2.18) видно, что в данном случае наработка на отказ определяется по данным испытания одного образца изделия. Если на испытании находится N образцов в течение времени t, то наработка на отказ вычисляется по формуле
,(4.2.19)
где t ij - время исправной работы j-го образца изделия между (i-1)-м и i-м отказом; n j - число отказов за время t j-го образца.

Наработка на отказ является достаточно наглядной характеристикой надежности, поэтому она получила широкое распространение на практике.

Параметр потока отказов и наработка на отказ характеризуют надежность восстанавливаемого изделия и не учитывают времени, необходимого на его восстановление. Поэтому они не характеризуют готовности устройства к выполнению своих функций в нужное время. Для этой цели вводятся такие критерии, как коэффициент готовности и коэффициент вынужденного простоя.

Коэффициентом готовности
называется отношение времени исправной работы к сумме времен исправной работы и вынужденных простоев устройства, взятых за один и тот же календарный срок. Эта характеристика по статистическим данным определяется
= t р /(t р + t п),(4.2.20)
где t р - суммарное время исправной работы изделия; t п - суммарное время вынужденного простоя.

Времена t р и t п вычисляются по формулам
; ,(4.2.21)
где t рi - время работы изделия между (i-1)-м и i-м отказом; t пi - время вынужденного простоя после i-го отказа; n - число отказов (ремонтов) изделия.

Для перехода к вероятностной трактовке величины t р и t п заменяются математическими ожиданиями времени между соседними отказами и времени восстановления соответственно. Тогда
K г = t ср / (t ср + t в),(4.2.22)
где t ср - наработка на отказ; t в - среднее время восстановления.

Коэффициентом вынужденного простоя
называется отношение времени вынужденного простоя к сумме времен исправной работы и вынужденных простоев изделия, взятых за один и тот же календарный срок.

Согласно определению
= t р /(t р + t п)(4.2.23)
или, переходя к средним величинам,
K п = t в / (t ср + t в).(4.2.24)
Коэффициент готовности и коэффициент вынужденного простоя связаны между собой зависимостью
K п = 1 - K г.(4.2.25)
При анализе надежности восстанавливаемых систем обычно коэффициент готовности вычисляют по формуле
K г = T ср / (T ср + t в).(4.2.26)
Формула (4.2.26) верна только в том случае, если поток отказов простейший, и тогда t ср = T ср.

Часто коэффициент готовности, вычисленный по формуле (4.2.26), отождествляют с вероятностью того, что в любой момент времени восстанавливаемая система исправна. На самом деле указанные характеристики неравноценны и могут быть отождествлены при определенных допущениях.

Действительно, вероятность возникновения отказа ремонтируемой системы в начале эксплуатации мала. С ростом времени t эта вероятность возрастает. Это означает, что вероятность застать систему в исправном состоянии в начале эксплуатации будет выше, чем после истечения некоторого времени. Между тем на основании формулы (4.2.26) коэффициент готовности не зависит от времени работы.

Для выяснения физического смысла коэффициента готовности K г запишем формулу для вероятности застать систему в исправном состоянии. При этом рассмотрим наиболее простой случай, когда интенсивность отказов l и интенсивность восстановления m есть величины постоянные.

Предполагая, что при t=0 система находится в исправном состоянии (P(0)=1), вероятность застать систему в исправном состоянии определяется из выражений
;
(4.2.27)
,
где l = 1 / T ср; m =1 / t в; K г = Т ср / (Т ср +t в).

Это выражение устанавливает зависимость между коэффициентом готовности системы и вероятностью застать ее в исправном состоянии в любой момент времени t.

Из (4.2.27) видно, что P г (t)® K г при t®¥ , т.е. практически коэффициент готовности имеет смысл вероятности застать изделие в исправном состоянии при установившемся процессе эксплуатации.

В некоторых случаях критериями надежности восстанавливаемых систем могут быть критерии невосстанавливаемых систем , например: вероятность безотказной работы, частота отказов, средняя наработка до первого отказа, интенсивность отказов . Такая необходимость возникает :
- когда имеет смысл оценивать надежность восстанавливаемой системы до первого отказа;
- в случае, когда применяется резервирование с восстановлением отказавших резервных устройств в процессе работы системы, причем отказ всей резервированной системы не допускается.

При рассмотрении вопросов надежности часто бывает удобно представить себе дело так, словно на элемент действует поток отказов с некоторой интенсивностью l(t); элемент отказывает в тот момент, когда происходит первое событие этого потока.

Образ "потока отказов" приобретает реальный смысл, если отказавший элемент немедленно заменя­ется новым (восстанавливается). Последовательность случайных моментов времени, в которое проис­ходят отказы (рис.3.10), представляет собой некоторый поток событий, а интервалы между событиями - независимые случайные величины, распределенные по соответствующему закону распределения.

Понятие "интенсивности отказов" может быть введено для любого закона надежности с плотностью f(t); в общем случае интенсивность отказов l будет переменной величиной.

Интенсивностью (или иначе "опасностью") отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим n(t) - число элементов, оказавшихся исправными к моменту t, а m(t, t+Dt), как и раньше, - число элементов, отказавших на ма­лом участке времени (t, t+Dt). На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к мо­менту t элементов n(t). Нетрудно убедиться, что при большом N отношение будет приближенно равно интенсивности отказов l (t):

Действительно, при большом N n(t)»Np(t)

Но согласно формуле (3.4) ,

В работах по надежности приближенное выражение (3.8) часто рассматривают как определение ин­тенсивности отказов, т.е. её определяют как среднее число отказов в единицу времени, приходящееся на один работающий элемент .

Характеристике l(t) можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно . Действительно, рассмотрим элемент вероятности l(t)dt - вероятность того, что за время (t, t+dt) эле­мент перейдет из состояния "работает" в состояние "не работает", при условии, что до момента t он ра­ботал. В самом деле, безусловная вероятность отказа элемента на участке (t, t+dt) равна f(t)dt. Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента t;

В - элемент отказал на участке времени (t, t+dt).

По правилу умножения вероятностей: f(t)dt = P(АВ) = Р(А) Р(В/А).



Учитывая, что Р(А)=р(t), получим: ;

а величина l(t) есть не что иное, как условная плотность вероятности перехода от состояния "работает" в состояние "отказал" для момента t.

Если известна интенсивность отказов l(t), то можно выразить через нее надежность р(t). Учитывая, что f(t)=-p"(t), запишем формулу (3.7) в виде:

Интегрируя, получим: ,

Таким образом, надежность выражается через интенсивность отказов.

В частном случае, когда l(t)=l=const, формула (3.9) дает:

p(t)=e - l t , (3.10)

т.е. так называемый экспоненциальный закон надежности.

Пользуясь образом "потока отказов", можно истолковать не только формулу (3.10), но и более об­щую формулу (3.9). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности p(t) действует поток отказов с переменной интенсивностью l(t). Тогда формула (3.9) для р(t) выражает вероятность того, что на участке времени (0, t) не появиться не одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности, работу эле­мента, начиная с момента включения t=0, можно представлять себе так, что на элемент действует пуас­соновский закон отказов; для экспоненциального закона надежности этот поток будет с постоянной ин­тенсивностью l, а для неэкспоненциального - с переменной интенсивностью l(t).

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется но­вым . Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским . Действительно, интенсивность его будет зависеть не просто от времени t, прошедшего с начала всего процесса, а и от времени t, прошедшего со случайного момента включения именно данного элемента; значит, поток событий имеет последствие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отка­зать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса. но при переменной, а не при постоянной интен­сивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциаль­ного, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 3.11).

Параметр l этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой p(t) и осями коор­динат. Для этого нужно положить параметр l показательного закона равным

где - площадь, ограниченная кривой надежности p(t). Таким образом, если мы хотим характеризо­вать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интен­сивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определили величину как площадь, ограниченную кривой р(t). Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по стати­стическому материалу как среднее арифметическое всех наблюдённых значений случайной величины T - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую р(t).

Пример 1. Надежность элемента р(t) убывает со временем по линейному закону (рис. 3.12). Найти интенсивность отказов l(t) и среднее время безотказной работы элемента .

Решение. По формуле (3.7) на участке (0, t o) имеем:

Согласно заданному закону надежности

(0

Второй интеграл здесь равен .

Что касается первого, то он вычислен приближённо (численно): ,

откуда » 0,37+0,135=0,505.

Пример 3. Плотность распределения времени безотказной работы элемента постоянна на участке (t 0 , t 1) и равна нулю вне этого участка (рис. 3.16). Найти интенсивность отказов l(t).

Решение. Имеем: , (t o

График интенсивности отказов показан на рис. 3.17; при t® t 1, l(t)® ¥ .

Наиболее удобным для аналитического описания является так называемый экспоненциальный (или показательный) закон надежности, который выражается формулой

где - постоянный параметр.

График экспоненциального закона надежности показан на рис. 7.10. Для этого закона функция распределения времени безотказной работы имеет вид

а плотность

Это есть уже известный нам показательный закон распределения, по которому распределено расстояние между соседними событиями в простейшем потоке с интенсивностью (см. § 4 гл. 4).

При рассмотрении вопросов надежности часто бывает удобно представлять себе дело так, словно на элемент действует простейший поток отказов с интенсивностью Я; элемент отказывает в момент, когда приходит первое событие этого потока.

Образ «потока отказов» приобретает реальный смысл, если отказавший элемент немедленно заменяется новым (восстанавливается).

Последовательность случайных моментов времени, в которые проис ходят отказы (рис. 7.11), представляет собой простейший поток событии, а интервалы между событиями - независимые случайные величины, распределенные по показательному закону (3,3),

Понятие «интенсивности отказов» может быть введено не только для экспоненциального, но и для любого другого закона надежности о плотностью вся разница будет в том, что при неэкспоненциальном законе интенсивность отказов Я будет уже не постоянной величиной, а переменной.

Интенсивностью (или иначе «опасностью») отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим - число элементов, оказавшихся исправными к моменту , как и и раньше, - число элементов, отказавших на малом участке времени На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к моменту t элементов . Нетрудно убедиться, что при большом N это отношение будет приближенно равно интенсивности отказов

Действительно, при большом N

Но согласно формуле (2.6)

В работах по надежности приближенное выражение (3.5) часто рассматривают как определение интенсивности отказов, т. е. определяют ее как среднее число отказов в единицу времени, приходящееся на один работающий элемент.

Характеристике можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно. Действительно, рассмотрим элемент вероятности - вероятность того, что за время элемент перейдет из состояния «работает» в состояние «не работает», при условии, что до момента t он работал. В самом деле, безусловная вероятность отказа элемента на участке равна Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента

В - элемент отказал на участке времени По правилу умножения вероятностей:

Учитывая, что получим:

а величина есть не что иное, как условная плотность вероятности перехода из состояния «работает» в состояние «отказал» для момента t.

Если известна интенсивность отказов , то можно выразить через нее надежность Учитывая, что запишем формулу (3.4) в виде:

Интегрируя, получим:

Таким образом надежность выражается через интенсивность отказов.

В частном случае, когда , формула (3.6) дает:

т. е. уже известный нам экспоненциальный закон надежности.

Пользуясь образом «потока отказов», можно истолковать не только формулу (3.7), но и более общую формулу (3.6). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности действует поток отказов с переменной интенсивностью Тогда формула (3.6) для выражает вероятность того, что на участке времени (0, t) не появится ни одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности работу элемента, начиная с момента включения можно представлять себе так, что на элемент действует пуассоновский поток отказов; для экспоненциального закона надежности это будет поток с постоянной интенсивностью , а для неэкспоненциального - с переменной интенсивностью

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется новым. Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским. Действительно, интенсивность его будет зависеть не просто от времени t, протекшего с начала всего процесса, а и от времени , протекшего со случайного момента включения именно данного элемента; значит, поток событий имеет последействие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отказать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса, но при переменной, а не постоянной интенсивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциального, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 7.12). Параметр этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой и осями координат. Для этого нужно положить параметр показательного закона равным

где - площадь, ограниченная кривой надежности

Таким образом, если мы хотим характеризовать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интенсивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определяли величину t как площадь, ограниченную кривой Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по статистическому материалу как среднее арифметическое всех наблюденных значений случайной величины Т - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую

Пример 1. Надежность элемента убывает со временем по линейному закону (рис. 7.13). Найти интенсивность отказов и среднее время безотказной работы элемента

Решение. По формуле (3.4) на участке ) имеем:

Согласно заданному закону надежности 4

Интенсивность отказов - отношение плотности распределения вероятности отказов к вероятности безотказной работы объекта:

где - плотность вероятности отказов и - вероятность безотказной работы .

Простыми словами, интенсивность отказов выражает шанс отказать в ближайший момент времени объекта (например, прибора), который уже проработал без отказов определённое время.

Статистически интенсивность отказов есть отношение числа отказавших образцов техники в единицу времени к среднему числу образцов, исправно работающих на интервале :

Где - среднее число исправно работающих образцов

на интервале .

Соотношение (1) для малых следует непосредственно из формулы вероятности безотказной работы (3)

и формулы плотности распределения безотказной работы (частоты отказов) (4)

На основе определения интенсивности отказов (1) имеет место равенство:

Интегрируя (5), получим:

Интенсивность отказов является основным показателем надёжности элементов сложных систем. Это объясняется следующими обстоятельствами:

  • надёжность многих элементов можно оценить одним числом, т.к. интенсивность отказа элементов - величина постоянная;
  • интенсивность отказов нетрудно получить экспериментально.

Опыт эксплуатации сложных систем показывает, что изменение интенсивности отказов большинства количества объектов описывается - образной кривой.

Время можно условно разделить на три характерных участка: 1. Период приработки. 2. Период нормальной эксплуатации. 3. Период старения объекта.

Период приработки объекта имеет повышенную интенсивность отказов, вызванную приработочными отказами, обусловленными дефектами производства, монтажа и наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем. В период нормальной эксплуатации интенсивность отказов практически остаётся постоянной, при этом отказы носят слуайный характер и появляются внезапно, прежде всего из-за случайных изменений нагрузки, несоблюдения условий эксплуатации, неблагоприятных внешних факторов и т.п. Именно этот период соответствует основному времени эксплуатации объекта. Возрастание интенсивности отказов относится к периоду старения объекта и вызвано увеличением числа отказов из-за износа, старения и других причин, связанных с длительной эксплуатацией. То есть вероятность отказа элемента, дожившего для момента в некотором последующем промежутке времени зависит от значений только на этом промежутке, а следовательно интенсивность отказов - локальный показатель надёжности элемента на данном промежутке времени.