Основные характеристики радиотехнических сигналов. Основы цифровой обработки сигнала. Вопрос. Радиотехнические сигналы. Классификация. Функции, описывающие сигналы, могут принимать как вещественные, так и комплексные значения. Поэтому в радиотехнике го

Прежде чем приступить к изучению каких-либо новых явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большим признакам. Для рассмотрения и анализа сигналов выделим их основные классы. Это необходимо по двум причинам. Во-первых, проверка принадлежности сигнала к конкретному классу - процедура анализа. Во-вторых, для представления и анализа сигналов разных классов зачастую приходится использовать разные средства и подходы. Основные понятия, термины и определения в области радиотехнических сигналов устанавливает национальный (ранее, государственный) стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы чрезвычайно разнообразны. Часть краткой классификации сигналов по ряду признаков приведена на рис. 1. Более подробно сведения о ряде понятий изложены далее. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы обычно описывается одной (одномерный сигнал; n = 1), двумя

(двумерный сигнал; n = 2) или более (многомерный сигнал n > 2) независимыми переменными. Одномерные сигналы являются функциями только времени, а многомерные, кроме того, отражают положение в n-мерном пространстве .

Рис.1. Классификация радиотехнических сигналов

Будем для определенности и упрощения в основном рассматривать одномерные сигналы, зависящие от времени, однако материал учебного пособия допускает обобщение и на многомерный случай, когда сигнал представляется в виде конечной или бесконечной совокупности точек, например в пространстве, положение которых зависит от времени. В телевизионных системах сигнал черно-белого изображения можно рассматривать как функцию f(x, у, f) двух пространственных координат и времени, представляющую интенсивность излучения в точке (х, у) в момент времени t на катоде. При передаче цветного телевизионного сигнала имеем три функции f(x, у, t), g(x, у, t), h(x, у, t), определенные на трехмерном множестве (можно рассматривать эти три функции также как компоненты трехмерного векторного поля). Кроме того, различные виды телевизионных сигналов могут возникать при передаче телевизионного изображения совместно со звуком.

Многомерный сигнал - упорядоченная совокупность одномерных сигналов. Многомерный сигнал создает, например, система напряжений на зажимах многополюсника (рис. 2). Многомерные сигналы описывают сложными функциями, и их обработка чаще возможна в цифровой форме. Поэтому многомерные модели сигналов особенно полезны в случаях, когда функционирование сложных систем анализируется с помощью компьютеров. Итак, многомерные, или векторные, сигналы состоят из множества одномерных сигналов

где n - целое число, размерность сигнала.

Р
ис. 2. Система напряжений многополюсника

По особенностям структуры временного представления (рис. 3) все радиотехнические сигналы делятся на аналоговые (analog), дискретные (discrete-time; от лат. discretus - разделенный, прерывистый) и цифровые (digital).

Если физический процесс, порождающий одномерный сигнал, можно представить непрерывной функцией времени u(t) (рис. 3, а), то такой сигнал называют аналоговым (непрерывным), или, более обобщенно, континуальным (continuos - многоступенчатым), если последний имеет скачки, разрывы по оси амплитуд. Заметим, что традиционно термин «аналоговый» используют для описания сигналов, которые непрерывны во времени. Непрерывный сигнал можно трактовать как действительное или комплексное колебание во времени u(t), являющейся функцией непрерывной действительной временной переменной. Понятие «аналоговый» сигнал связано с тем, что его любое мгновенное значение аналогично закону изменения соответствующей физической величины во времени. Примером аналогового сигнала является некоторое напряжение, которое подано на вход осциллографа, в результате чего на экране возникает непрерывная кривая как функция времени. Поскольку современная обработка непрерывных сигналов с использованием резисторов, конденсаторов, операционных усилителей и т. п. имеет мало общего с аналоговыми компьютерами, термин «аналоговый» сегодня представляется не совсем неудачным. Более корректным было бы называть непрерывной обработкой сигналов то, что сегодня обычно называют аналоговой обработкой сигналов.

В радиоэлектронике и технике связи широко применяются импульсные системы, устройства и цепи, действие которых основано на использовании дискретных сигналов. Например, электрический сигнал, отражающий речь, является непрерывным как по уровню, так и по времени, а датчик температуры, выдающий ее значения через каждые 10 мин, служит источником сигналов, непрерывных по значению, но дискретных по времени.

Дискретный сигнал получают из аналогового путем специального преобразования. Процесс преобразования аналогового сигнала в последовательность отсчетов называется дискретизацией (sampling), а результат такого преобразования - дискретным сигналом или дискретным рядом (discrete series).

Простейшая математическая модель дискретного сигнала
- последовательность точек на временной оси, взятых, как правило, через равные промежутки времени
, называемые периодом дискретизации (или интервалом, шагом дискретизации;sample time), и в каждой из которых заданы значения соответствующего непрерывного сигнала (рис. 3, б). Величина, обратная периоду дискретизации, называется частотой дискретизации (sampling frequency):
(другое обозначение
). Соответствующая ей угловая (круговая) частота определяется следующим образом:
.

Дискретные сигналы могут быть созданы непосредственно источником информации (в частности, дискретные отсчеты сигналов датчиков в системах управления). Простейшим примером дискретных сигналов могут служить сведения о температуре, передаваемые в программах новостей радио и телевидения, в паузах же между таким передачами сведений о погоде обычно нет. Не следует думать, что дискретные сообщения обязательно преобразуют в дискретные сигналы, а непрерывные сообщения - в непрерывные сигналы. Чаще всего именно непрерывные сигналы используют для передачи дискретных сообщений (в качестве их переносчиков, т. е. несущей). Дискретные же сигналы можно использовать для передачи непрерывных сообщений.

Очевидно, что в общем случае представление непрерывного сигнала набором дискретных отсчетов приводит к определенной потере полезной информации, так как мы ничего не знаем о поведении сигнала в промежутках между отсчетами. Однако, существует класс аналоговых сигналов, для которых такой потери информации практически не происходит, и поэтому они могут быть с высокой степенью точности восстановлены по значениям своих дискретных отсчетов.

Разновидностью дискретных сигналов является цифровой сигнал (digital signal), В процессе преобразования дискретных отсчетов сигнала в цифровую форму (обычно в двоичные числа) производится его квантование по уровню (quantization) напряжения . При этом значения уровней сигнала можно пронумеровать двоичными числами с конечным, требуемым числом разрядов. Сигнал, дискретный во времени и квантованный по уровню, называют цифровым сигналом. Кстати, сигналы, квантованные по уровню, но непрерывные во времени, на практике встречаются редко. В цифровом сигнале дискретные значения сигнала
вначале квантуют по уровню (рис. 3, в) и затем квантованные отсчеты дискретного сигнала заменяют числами
чаще всего реализованными в двоичном коде, который представляют высоким (единица) и низким (нуль) уровнями потенциалов напряжения - короткими импульсами длительностью(рис. 3, г). Такой код называют униполярным. Поскольку отсчеты могут принимать конечное множество значений уровней напряжения (см. например второй отсчет на рис. 3, г, который в цифровом виде практически равновероятно может быть записан как числом 5 - 0101, так и числом 4 - 0100), то при представлении сигнала неизбежно происходит его округление. Возникающие при этом ошибки округления называются ошибками (или шумами) квантования (quantization error, quantization noise).

Последовательность чисел, представляющая сигнал при цифровой обработке, является дискретным рядом (discrete series). Числа, составляющие последовательность, являются значениями сигнала в отдельные (дискретные) моменты времени и называются цифровыми отсчетами сигнала (samples). Далее квантованное значение сигнала представляется в виде набора импульсов, характеризующих нули («0») и единицы («1») при представлении этого значения в двоичной системе счисления (рис. 3, г). Набор импульсов используют для амплитудной модуляции несущего колебания и получения кодово-импульсного радиосигнала.

В результате цифровой обработки не получается ничего «физического», только цифры. А цифры - это абстракция, способ описания информации, содержащейся в сообщении. Следовательно, нам необходимо иметь что-то физическое, что будет представлять цифры или «являться носителем» цифр. Итак, сущность цифровой обработки состоит в том, что физический сигнал (напряжение, ток и т. д.) преобразуется в последовательность чисел, которая затем подвергается математическим преобразованиям в вычислительном устройстве.

Трансформированный цифровой сигнал (последовательность чисел) при необходимости может быть преобразован обратно, в напряжение или ток.

Цифровая обработка сигналов предоставляет широкие возможности по передаче, приему и преобразованию информации, в том числе и те, которые не могут быть реализованы с помощью аналоговой техники. На практике при анализе и обработке сигналов чаще всего цифровые сигналы заменяют дискретными, а их отличие от цифровых интерпретируют как шум квантования. В связи с этим эффекты, связанные с квантованием по уровню и оцифровкой сигналов, в большинстве случаев не будут приниматься во внимание. Можно сказать, что и в дискретных и цифровых цепях (в частности, в цифровых фильтрах) обрабатывают дискретные сигналы, только внутри структуры цифровых цепей эти сигналы представлены числами.

Вычислительные устройства, предназначенные для обработки сигналов, могут оперировать с цифровыми сигналами. Существуют также устройства, построенные в основном на базе аналоговой схемотехники, которые работают с дискретными сигналами, представленными в виде импульсов различной амплитуды, длительности или частоты повторения.

Одним из основных признаков, по которым различаются сигналы, является предсказуемость сигнала (его значений) во времени.

Р
ис. 3. Радиотехнические сигналы:

а - аналоговый; б - дискретный; в - квантованный; г - цифровой

По математическому представлению (по степени наличия априорной, от лат. a priori - из предшествующего, т. е. доопытной информации) все радиотехнические сигналы принято делить на две основные группы: детерминированные (регулярные; determined) и случайные (casual) сигналы (рис. 4).

Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны, т. е. предсказуемы с вероятностью, равной единице. Детерминированные сигналы описываются заранее заданными функциями времени. Кстати, мгновенное значение сигнала - это мера того, на какое значение и в каком направлении переменная отклоняется от нуля; таким образом, мгновенные значения сигнала могут быть как положительными, так и отрицательными (рис. 4, а). Простейшими примерами детерминированного сигнала являются гармоническое колебание с известной начальной фазой, высокочастотные колебания, модулированные по известному закону, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известны .

Если бы передаваемое по каналам связи сообщение было детерминированным, т. е. заранее известным с полной достоверностью, то его передача была бы бессмысленной. Такое детерминированное сообщение по сути дела не содержит никакой новой информации. Поэтому сообщения следует рассматривать как случайные события (или случайные функции, случайные величины). Иначе говоря, должно существовать некоторое множество вариантов сообщения (например, множество различных значений давления, выдаваемых датчиком), из которых реализуют с определенной вероятностью одно. В связи с этим и сигнал является случайной функцией. Детерминированный сигнал не может быть носителем информации. Его можно использовать лишь для испытаний радиотехнической системы передачи информации или тестирования отдельных ее устройств. Случайный характер сообщений, а также помех обусловил важнейшее значение теории вероятностей в построении теории передачи информации.

Рис. 4. Сигналы:

а - детерминированный; б - случайный

Детерминированные сигналы разделяют на периодические и непериодические (импульсные). Сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую он предназначен, называют импульсным сигналом.

Случайными называют сигналы, мгновенные значения которых в любой момент времени не известны и не могут быть предсказаны с вероятностью, равной единице. Фактически для случайных сигналов можно знать только вероятность того, что он примет какое-либо значение.

Может показаться, что понятие «случайный сигнал» не совсем корректно.

Но это не так. Например, напряжение на выходе приемника тепловизора, направленного на источник ИК-излучения, представляет хаотические колебания, несущие разнообразную информацию об анализируемом объекте. Строго говоря, все сигналы, встречающиеся на практике, являются случайными и большинство из них представляют хаотические функции времени (рис. 4, б). Как ни парадоксально на первый взгляд, но сигналом, несущим полезную информацию, может быть только случайный сигнал. Информация в таком сигнале заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. Сигналы связи во времени меняют мгновенные значения, причем эти изменения могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Таким образом, сигналы связи являются в некотором роде случайными процессами, поэтому и их описание осуществляется посредством методов, аналогичных методам описания случайных процессов.

В процессе передачи полезной информации радиотехнические сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражают в их названии: сигналы модулированные, демодулированные (детектированные), кодированные (декодированные), усиленные, задержанные, дискретизированные, квантованные и др.

По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

По принадлежности к тому или иному виду радиотехнических систем, и в частности систем передачи информации, различают «связные», телефонные, телеграфные, радиовещательные, телевизионные, радиолокационные, радионавигационные, измерительные, управляющие, служебные (в том числе пилот-сигналы) и другие сигналы.

Приведенная краткая классификация радиотехнических сигналов не полностью охватывает все их разнообразие.

С информационной точки зрения сигналы можно разделить на детерминированные и случайные.

Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью единица. Примерами детерминированных сигналов могут служить импульсы или пачки импульсов, форма, амплитуда и положение во времени которых известны, а также непрерывный сигнал с заданными амплитудными и фазовыми соотношениями внутри его спектра.

К случайным относят сигналы, мгновенные значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Такими сигналами являются, например, электрическое напряжение, соответствующее речи, музыке, последовательности знаков телеграфного кода при передаче неповторяющегося текста. К случайным сигналам относится также последовательность радиоимпульсов на входе радиолокационного приемника, когда амплитуды импульсов и фазы их высокочастотного заполнения флуктуируют из-за изменения условий распространения, положения цели и некоторых других причин. Можно привести большое число других примеров случайных сигналов. По существу, любой сигнал, несущий в себе информацию, должен рассматриваться как случайный.

Перечисленные выше детерминированные сигналы, «полностью известные», информации уже не содержат. В дальнейшем такие сигналы часто будут обозначаться термином колебание.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами - шумами. Уровень шумов является основным фактором, ограничивающим скорость передачи информации при заданном сигнале.

Рис. 1.2. Сигналы произвольные по величине и по времени (а), произвольные по величине и дискретные по времени (б), квантованные по величине и непрерывные по времени (в), квантованные по величине и дискретные по времени (г)

Поэтому изучение случайных сигналов неотделимо от изучения шумов. Полезные случайные сигналы, а также помехи часто объединяют термином случайные колебания или случайные процессы.

Дальнейшее подразделение сигналов можно связать с их природой: можно говорить о сигнале как о физическом процессе или как о закодированных, например в двоичный код, числах.

В первом случае под сигналом понимают какую-либо изменяющуюся во времени электрическую величину (напряжение, ток, заряд и т. д.), определенным образом связанную с передаваемым сообщением.

Во втором случае то же сообщение содержится в последовательности двоично-кодированных чисел.

Сигналы, формируемые в радиопередающих устройствах и излучаемые в пространство, а также поступающие в приемное устройство, где они подвергаются усилению и некоторым преобразованиям, являются физическими процессами.

В предыдущем параграфе указывалось, что для передачи сообщений на расстояние используются модулированные колебания. В связи с этим сигналы в канале радиосвязи часто подразделяют на управляющие сигналы и на радиосигналы; под первыми понимают модулирующие, а под вторыми - модулированные колебания.

Обработка сигналов в виде физических процессов осуществляется с помощью аналоговых электронных цепей (усилителей, фильтров и т. д.).

Обработка сигналов, закодированных в цифру, осуществляется с помощью вычислительной техники.

Представленная на рис. 1.1 и описанная в § 1.2 структурная схема канала связи не содержит указаний о виде используемого для передачи сообщения сигнала и структуре отдельных устройств.

Между тем сигналы от источника сообщений, а также после детектора (рис. 1.1) могут быть как непрерывные, так и дискретные (цифровые). В связи с этим применяемые в современной радиоэлектронике сигналы можно разделить на следующие классы:

произвольные по величине и непрерывные по времени (рис. 1.2, а);

произвольные по величине и дискретные по времени (рис. 1.2, б);

квантованные по величине и непрерывные по времени (рис. 1.2, в);

квантованные по величине и дискретные по времени (рис. 1.2, г).

Сигналы первого класса (рис. 1.2, а) иногда называют аналоговыми, так как их можно толковать как электрические модели физических величин, или непрерывными, так как они задаются по оси времени на несчетном множестве точек. Таки? множества называются континуальными. При этом по оси ординат сигналы могут принимать любое значение в определенном интервале. Поскольку эти сигналы могут иметь разрывы, как на рис. 1.2, а, то, чтобы избежать некорректности при описании, лучше такие сигналы обозначать термином континуальный.

Итак, континуальный сигнал s(t) является функцией непрерывной переменной t, а дискретный сигнал s(х) - функцией дискретной переменной х, принимающей только фиксированные значения . Дискретные сигналы могут создаваться непосредственно источником информации (например, дискретными датчиками в системах управления или телеметрии) или образовываться в результате дискретизации континуальных сигналов.

На рис. 1.2, б представлен сигнал, заданный при дискретных значениях времени t (на счетном множестве точек); величина же сигнала в этих точках может принимать любое значение в определенном интервале по оси ординат (как и на рис. 1.2, а). Таким образом, термин дискретный характеризует не сам сигнал, а способ задания его на временнбй оси.

Сигнал на рис. 1.2, в задан на всей временнбй оси, однако его величина может принимать лишь дискретные значения. В подобных случаях говорят о сигнале, квантованном по уровню.

В дальнейшем термин дискретный будет применяться только по отношению к дискретизации по времени; дискретность же по уровню будет обозначаться термином квантование.

Квантование используют при представлении сигналов в цифровой форме с помощью цифрового кодирования, поскольку уровни можно пронумеровать числами с конечным числом разрядов. Поэтому дискретный по времени и квантованный по уровню сигнал (рис. 1.2, г) в дальнейшем будет называться цифровым.

Таким образом, можно различать континуальные (рис. 1.2, а), дискретные (рис. 1.2, б), квантованные (рис. 1.2, в) и цифровые (рис. 1.2, г) сигналы.

Каждому из этих классов сигналов можно поставить в соответствие аналоговую, дискретную или цифровую цепи. Связь между видом сигнала и видом цепи показана на функциональной схеме (рис. 1.3).

При обработке континуального сигнала с помощью аналоговой цепи не требуется дополнительных преобразований сигнала. При обработке же континуального сигнала с помощью дискретной цепи необходимы два преобразования: дискретизация сигнала по времени на входе дискретной цепи и обратное преобразование, т. е. восстановление континуальной структуры сигнала на выходе дискретной цепи.

Рис. 1.3. Виды сигнала и соответствующие им цепи

Наконец, при цифровой обработке континуального сигнала требуются еще два дополнительных преобразования: аналог-цифра, т. е. квантование и цифровое кодирование на входе цифровой цепи, и обратное преобразование цифра-аналог, т. е. декодирование на выходе цифровой цепи.

Процедура дискретизации сигнала и особенно преобразование аналог-цифра требуют очень высокого быстродействия соответствующих электронных устройств. Эти требования возрастают с повышением частоты континуального сигнала. Поэтому цифровая техника получила наибольшее распространение при обработке сигналов на относительно низких частотах (звуковых и видеочастотах). Однако достижения микроэлектроники способствуют быстрому повышению верхней границы обрабатываемых частот.


Моделирование сигналов начинается, прежде всего, с их классификации. Существует несколько способов классификации, один из которых показан на рис. 1.6 .

Рис. 1.6.

Следует иметь в виду, что в радиотехнических цепях действуют электрические сигналы.

Электрические сигналы - это изменяющиеся во времени электрические токи или напряжения.

Все электрические сигналы делят на детерминированные и случайные.

Детерминированные сигналы описываются заданной функцией времени, значение которой в любой момент времени известно или может быть предсказано с вероятностью единица.

К детерминированным сигналам относятся так называемые испытательные или тестовые сигналы. Они широко используются при проведении различных исследований, при испытании радиоаппаратуры, в радиоизмерителыюй практике и т.п.

Для описания случайных сигналов используется вероятностный подход, при котором случайные сигналы рассматриваются как случайные процессы.

Случайный сигнал - это случайный процесс, изменяющийся в заданном динамическом диапазоне и принимающий любое значение из диапазона в вероятностью меньшей единицы.

Как правило, случайные сигналы представляют собой хаотические функции времени, а выбор его математической модели зависит от закона его распределения (равномерный, нормальный или гауссов, пуассоновский и т.п.).

Все случайные сигналы делятся на стационарные, нестационарные и эргодические.

Случайный процесс называется стационарным, если его статистические характеристики (как минимум математическое ожидание т и дисперсия а 2) не зависят от времени. В противном случае процесс не стационарен.

Процесс называется эргодическим, если его средняя по ансамблю реализаций равна средней по времени.

Все эргодические процессы являются стационарными, но не все стационарные процессы являются эргодическими.

Большинство случайных сигналов в радиотехнических системах являются эргодическими, поэтому для описания математической модели достаточно случайный сигнал усреднить по ансамблю реализаций или по времени.

Реальные сигналы всегда являются в какой - то мере случайными. Во - первых, сигнал всегда искажается в цепях передатчика и приёмника из - случайного характера изменения параметров их элементов. Во - вторых, в среде передачи на сигнал всегда воздействуют случайные помехи, превращая его в случайный на входе приёмника. В то же время во многих случаях реальный сигнал с известной степенью точности можно рассматривать как детерминированный, что облегчает их анализ.

Все сигналы (детерминированные и случайные) делятся на периодические и непериодические.

Периодические сигналы характеризуются свойством повторяемости через некоторый промежуток времени Т, называемый периодом: s(t) = s(t + nT),n= 1,2,3,.... (1.2)

Здесь s(t) - рассматриваемый сигнал; Т - период его повторения; f = 1/Т - частота повторения сигнала.

Если в процессе передачи Т меняется произвольным образом, то сигнал называют непериодическим. Если же период Т повторяется через достаточно большой промежуток времени, то сигнал называют ква- зипериодическим или псевдослучайным.

Сигналы, даже аналоговые, существующие только в одном интервале времени, относятся к импульсным. На рисунке 1.7 приведены некоторые виды перечисленных выше сигналов.

Рис. 1.7, а описывает, например, детерминированный дискретный сигнал с периодом следования прямоугольных импульсов Т и длительностью импульса Т с в соотношении 2: 1 (меандр). Отношение Q = Т/Т с называется скважностью сигнала. Для сигнала рис. 1.7, а она равна 2, а для сигнала рис. 1.7,с - 3. На рисунке 1.7, с показан периодический сигнал с Q = 3. Рисунки 1.7, b и d иллюстрируют случайные и непериодические сигналы соответственно. Если на всех рисунках выделить только один импульс, то получим, соответственно, сигнал импульсный .


Рис. 1.7.

При рассмотрении различных сигналов обычно прибегают к четырём видам их представления:

  • - временному;
  • - спектральному;
  • - корреляционному;
  • - векторному.

Временное представление.

Временное представление основано на рассмотрении сигнала как функции времени. В зависимости от положения сигнала относительно наблюдателя, его функция времени будет, вообще говоря, различной. Сказанное достаточно просто поясняется с помощью диаграммы, изображённой на рис. 1.8.


Рис. 1.8.

Положим, что «наблюдатель» находится в точке, которая характеризуется интервалом наблюдения t4 - ts. Очевидно, что в момент времени tj наблюдается только некоторая точка, отображающая факт наличия сигнала, а о его структуре сказать ничего нельзя. По мере приближения к «наблюдателю» сигнал начинает растягиваться во времени и мы видим какую-то его структуру (интервал времени t2 - На этом интервале структура сигнала соответствует его истинной структуре, а вот частота следования импульсов не будет соответствовать фактической. Таковой она станет только в интервале t 4 - t 5 , когда расположение сигнала будет соответствовать положению «наблюдателя». В этом интервале мы сможем измерить истинные параметры сигнала - его амплитуду, частоту и фазу.

На этом свойстве основывается эффект Доплера, который легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится, и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты звуковых волн.

Если источник сигнала движется по направлению к приёмнику («наблюдателю»), то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

где со 0 - угловая частота, с которой источник испускает волны, с - скорость распространения волн в среде, v - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот.

Математически временное представление сигнала - это разложение сигнала s(t), при котором в качестве базисных (основополагающих) функций используются единичные импульсные функции - дельта-функции. Математическое описание такой функции задается соотношениями

где 8(t) - дельта-функция, отличная от нуля в начале координат (при t = 0).

Для более общего случая, когда дельта-функция отличается от нуля в момент времени t = tj (рис. 1.9), имеем

Рис. 1.9. Дельта-функция

Такая математическая модель соответствует абстрактному импульсу бесконечно малой длительности и безграничной величины. Единственным параметром, правильно отражающим реальный сигнал, является время его действия. С помощью дельта-функции можно выразить значение реального сигнала s(t) в конкретный момент времени tji

Это равенство справедливо для любого текущего момента времени t.

Таким образом, функцию s(t) можно выразить в виде совокупности примыкающих друг к другу импульсов бесконечно малой длительности. Ортогональность совокупности таких импульсов очевидна, так как они не перекрываются во времени.

Подавляющее большинство сигналов, использующихся в современных системах связи имеют вид прямоугольных импульсов. Прямоугольный импульс прямоуголен только в идеальном случае. На самом деле он имеет вид, изображённый на рис. 1.10 .


Рис. 1.10.

На рисунке импульс имеет следующие основные составные части:

  • - участок t r t2 - фронт, т.е. отклонение напряжения от исходного уровня;
  • - участок t2-t3 - вершина импульса;
  • - участок t3-t 4 - срез (задний фронт), т.е. возврат напряжения к исходному уровню.

Параметры импульса:

  • 1. Амплитуда импульса U m - наибольшее отклонение импульса от исходного уровня.
  • 2. Длительность импульса т н (t„). Измеряется на различных уровнях U m . Длительность бывает:
    • - полная, на уровне 0,lU m (т ио);
    • - активная, при которой обычно срабатывает импульсное устройство - на уровне 0,5U m (т иа).
  • 2. Длительность фронта (1ф) - время нарастания напряжения от 0,1 U m до 0,9U m (может быть полной и активной).
  • 3. Длительность среза (t c) - время возвращения напряжения к исходному уровню от 0,9U m до 0,lU m .
  • 4. Спад вершины импульса (AU m). Описывается коэффициентом

спада Величина коэффициента спада колеблется в диапазоне от 0,01 до 0,1.

В качестве дополнительного можно отметить такой параметр как крутизна - скорость нарастания (спада) импульса.

Крутизна фронта определяется как

Крутизна среза определяется как

Определяется крутизна в [В/с]. Прямоугольный импульс обладает бесконечно большой крутизной. Наибольшее применение получили прямоугольные и экспоненциальные видеоимпульсы.

Для передачи информации используются последовательности импульсов - периодические и непериодические. Периодические последовательности используются только для тестирования аппаратуры, а для передачи семантической информации применяются непериодические последовательности. Тем не менее, для рассмотрения основных закономерностей, имеющих место при передаче информации, обратимся к периодическим последовательностям (рис. 1.11).

Рис. 1.11.

Рассмотрим параметры последовательности импульсов.

  • 1. Период следования (повторения) - Т. Т = t„ + t n .
  • 2. Частота следования (повторения) - F. Это есть число импульсов в секунду. Выражение для определения частоты имеет вид: F = 1/Т.
  • 3. Скважность - отношение интервала между импульсами (периода) (скважины) к длительности самого импульса (Q). Q=T/t H . Скважность всегда больше 1 (Q>1).
  • 4. Коэффициент заполнения - величина, обратная скважности (у).

Таким образом, основными параметрами импульсов являются амплитуда, длительность импульса, длительность фронта, длительность среза, спад вершины импульса.

Параметрами последовательности импульсов являются период следования импульсов, частота следования импульсов, скважность, коэффициент заполнения.

Периодический сигнал описывается выражением s(t) = s(t + Т), причём в течение периода Т (ti, t + Т) сигнал описывается формулой

Если в процессе передачи период Т меняется произвольным образом, то сигнал называют непериодическим. Если же период Т повторяется через достаточно большой промежуток времени, то сигнал называют квазипериодическим или псевдослучайным.

Среди множества различных сигналов особое место занимают так называемые тестовые или испытательные сигналы. Основные из них приведены в таблице 1 .

Таблица 1

Испытательные сигналы

Приведенные в таблице 1 сигналы являются функциями времени, но следует отметить, что такие же функции используются и в частотной области, где аргументом будет частота. Любую из функций можно смещать во времени в желаемую область временной плоскости и использовать для описания более сложных сигналов.

Функция включения (единичная функция (функция скачка) или функция Хевисайда), позволяет описать процесс перехода некоторого физического объекта из исходного - «нулевого» в «единичное» состояние, причем этот переход совершается мгновенно. С помощью функции включения удобно описывать, например, разнообразные процессы коммутации в электрических цепях.

При моделировании сигналов и систем значение единичной функции (функции скачка) в точке t = 0 очень часто принимают равным 1, если это не имеет принципиального значения. Эта функция используется также при создании математических моделей сигналов конечной длительности. При умножении любой произвольной функции, в том числе периодической, на прямоугольный импульс, сформированный из двух последовательных функций включения s(t) = o(t) - o(t - Т), из неё «вырезается» участок на интервале 0 - Т, и обнуляются значения функции за пределами этого интервала (следует обратить внимание из аналитической записи этого примера, где «выставлены» эти функции). Произведение произвольного сигнала на функцию включения характеризует начало действия сигнала.

Дельта-функция или функция Дирака по определению дополнительно описывается следующими математическими выражениями:

причем интеграл характеризует тот факт, что эта функция имеет единичную площадь и локализована в конкретной временной точке.

Функция S(t-i) не является дифференцируемой, и имеет размерность, обратную размерности её аргумента, что непосредственно следует из безразмерности результата интегрирования и, в соответствии с примечаниями таблицы, характеризует скорость изменения функции включения. Значение дельта-функции равно нулю везде за исключением точки т, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать амплитудное значение, равное бесконечности, в точке t = т на аналоговой временной шкале, т. е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

При всей своей абстрактности дельта-функция имеет вполне определённый физический смысл. Представим себе импульсный сигнал прямоугольной формы (выразив его функцией из таблицы - это rect- функция, т. е. сигнал s(t) = (1/ти)гесф(1-т)/ти], от англ, rectangle - прямоугольник) длительностью т,„ амплитуда которого равна 1/т,„ а площадь соответственно равна 1.

При уменьшении значения длительности т и импульс, сокращаясь по длительности, сохраняет свою площадь, равную 1, и возрастает по амплитуде. Предел такой операции при т„->0и носит название дельта-импульса. Этот сигнал 5(t-x) сосредоточен в одной координатной точке t=x, конкретное амплитудное значение сигнала не определено, но площадь (интеграл) остается равной 1.

Это не мгновенное значение функции в точке t = т, а именно импульс (импульс силы в механике, импульс тока в электротехнике и т.

п.) - математическая модель короткого действия, значение которого равно 1.

Дельта-функция обладает фильтрующим свойством. Суть его заключается в том, что если дельта-функция 5(t-x) входит под интеграл какой-либо функции в качестве множителя, то результат интегрирования равен значению подынтегральной функции в точке т расположения дельта-функции, т. е.:

Пределы интегрирования в этом выражении можно ограничить ближайшими окрестностями точки т.

При изучении общих свойств сигналов, абстрагируются от их физической природы и назначения, заменяя их математической моделью. Математическая модель - это приближённое описание сигнала в форме, наиболее пригодной для проводимого исследования. Математическое описание всегда отражает лишь отдельные, наиболее важные свойства сигнала, существенные для данного исследования.

Математический аппарат, используемый при анализе сигналов, позволяет проводить исследования без учёта их физической природы.

При практическом анализе сигналов чаще всего применяется представление в виде обобщённого ряда Фурье,

однако эти сигналы должны удовлетворять условию конечности энергии на интервале от t до t2

Так как равенство (1.10) понимается в среднеквадратическом смысле, представление сигнала в виде обобщённого ряда Фурье сводится к выбору системы базисных функций {

В настоящее время широкое применение нашли следующие ортогональные базисные функции - тригонометрические (sinx, cosx), полиномы Чебышева, Эрмита, функции Уолша, Хаара и др.

Коэффициенты с п определяются исходя из минимизации среднеквадратической ошибки а 0 , обусловленной конечным числом слагаемых в правой части выражения (1.10)

где N - число слагаемых, а поскольку базисные функции (р п зависят от времени.

При этом ошибка, обусловленная конечным числом слагаемых в правой части выражения (1.10), является наименьшей по сравнению с другими способами определения коэффициентов с п. Так как а > 0, то всегда имеет место неравенство Г31

Прежде чем приступить к изучению каких – либо явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большему количеству признаков. Предпримем подобную попытку применительно к радиотехническим сигналам и помехам.

Основные понятия, термины и определения в области радиотехнических сигналов устанавливает государственный стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы весьма разнообразны. Их можно классифицировать по целому ряду признаков.

1. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы делятся на одномерные и многомерные . На практике наиболее распространены одномерные сигналы. Они обычно являются функциями времени. Многомерные сигналы состоят из множества одномерных сигналов, и кроме того, отражают свое положение в n- мерном пространстве. Например, сигналы, несущие информацию об изображении какого-либо предмета, природы, человека или животного, являются функциями и времени и положения на плоскости.

2. По особенностям структуры временного представления все радиотехнические сигналы подразделяются на аналоговые , дискретные и цифровые . В лекции №1 уже были рассмотрены их основные особенности и отличия друг от друга.

3. По степени наличия априорной информации все многообразие радиотехнических сигналов принято делить на две основные группы: детерминированные (регулярные) и случайные сигналы. Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны. Примером детерминированного радиотехнического сигнала может служить гармоническое (синусоидальное) колебание, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известно. По сути дела детерминированный сигнал не несет в себе никакой информации и практически все его параметры можно передать по каналу радиосвязи одним или несколькими кодовыми значениями. Другими словами, детерминированные сигналы (сообщения) по существу не содержат в себе информации, и нет смысла их передавать. Они обычно применяются для испытаний систем связи, радиоканалов или отдельных устройств.

Детерминированные сигналы подразделяются на периодические и непериодические (импульсные ). Импульсный сигнал – это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен. Периодические сигналы бывают гармоническими , то есть содержащими только одну гармонику, и полигармоническими , спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы называются полигармоническими.

Случайные сигналы – это сигналы, мгновенные значения которых в любые моменты времени неизвестны и не могут быть предсказаны с вероятностью, равной единице. Как ни парадоксально на первый взгляд, но сигналом несущим полезную информацию, может быть только случайный сигнал. Информация в нем заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. На практике любой радиотехнический сигнал, в котором заложена полезная информация, должен рассматриваться как случайный.

4. В процессе передачи информации сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражается в их названии: сигналы модулированные , демодулированные (детектированные ), кодированные (декодированные ), усиленные , задержанные , дискретизированные , квантованные и др.

5. По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

6. По принадлежности к тому или иному виду систем передачи информации различают телефонные , телеграфные , радиовещательные , телевизионные , радиолокационные , управляющие , измерительные и другие сигналы.

Рассмотрим теперь классификацию радиотехнических помех. Под радиотехнической помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем радиосвязи помеха – это любое случайное воздействие на полезный сигнал, ухудшающее верность воспроизведения передаваемых сообщений. Классификация радиотехнических помех возможна также по ряду признаков.

1. По месту возникновения помехи делят на внешние и внутренние . Основные их виды были уже рассмотрены в лекции №1.

2. В зависимости от характера взаимодействия помехи с сигналом различают аддитивные и мультипликативные помехи. Аддитивной называется помеха, которая суммируется с сигналом. Мультипликативной называется помеха, которая перемножается с сигналом. В реальных каналах связи обычно имеют место и аддитивные, и мультипликативные помехи.

3. По основным свойствам аддитивные помехи можно разделить на три класса: сосредоточенные по спектру (узкополосные помехи), импульсные помехи (сосредоточенные во времени) и флуктуационные помехи (флуктуационные шумы), не ограниченные ни во времени, ни по спектру. Сосредоточенными по спектру называют помехи, основная часть мощности которых находится на отдельных участках диапазона частот, меньших полосы пропускания радиотехнической системы. Импульсной помехой называется регулярная или хаотическая последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы радиотехнических цепей или работающих рядом с ними устройств. Импульсные и сосредоточенные помехи часто называют наводками .

Между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют в единстве, хотя и противоположны по своему действию.

Случайные процессы

Как указывалось выше, отличительная черта случайного сигнала состоит в том, что его мгновенные значения заранее не предсказуемы. Практически все реальные случайные сигналы и помехи представляют собой хаотические функции времени, математическими моделями которых являются случайные процессы, изучаемые в дисциплине статистическая радиотехника. Случайным процессом принято называть случайную функцию аргумента t , где t текущее время. Случайный процесс обозначается прописными буквами греческого алфавита , , . Допустимо и другое обозначение, если оно заранее оговорено. Конкретный вид случайного процесса, который наблюдается во время опыта, например на осциллографе, называется реализацией этого случайного процесса. Вид конкретной реализации x(t) может задаваться определенной функциональной зависимостью аргумента t или графиком.

В зависимости от того, непрерывные или дискретные значения принимают аргумент t и реализация х , различают пять основных видов случайных процессов. Поясним эти виды с указанием примеров.

Непрерывный случайный процесс характеризуется тем, что t и х являются непрерывными величинами (рис. 2.1,а). Таким процессом, например, является шум на выходе радиоприемного устройства.

Дискретный случайный процесс характеризуется тем, что t является непрерывной величиной, а х - дискретной (рис. 2.1,б). Пере­ход от к происходит в любой момент времени. Примером такого процесса является процесс, характеризующий состояние системы массового обслуживания, когда система скачком в произвольные моменты времени t переходит из одного состояния в другое. Другой пример это результат квантования непрерывного процесса только по уровню.

Случайная последовательность характеризуется тем, что t яв­ляется дискретной, а х - непрерывными величинами (рис. 2.1,в). В качестве примера можно указать на временные выборки в конкретные моменты времени из непрерывного процесса.

Дискретная случайная последовательность характеризуется тем, что t и х являются дискретными величинами (рис. 2.1,г). Такой процесс может быть получен в результате квантования по уровню и дискретизации по времени. Такими являются сигналы в цифровых системах связи.

Случайный поток представляет собой последовательность точек, дельта-функций или событий (рис. 2.1, д, ж) в случайные моменты времени. Этот процесс широко применяется в теории надёжности, когда поток неисправностей радиоэлектронной техники рассматривается как случайный процесс.

.
Основы цифровой обработки сигнала (ОЦОС).

Преподаватель: Кузнецов Вадим Вадимович

Https://github.com/ra3xdh/DSP-RPD

Https://github.com/ra3xdh/RTUiS-labs


  1. Вопрос. Радиотехнические сигналы. Классификация.
Сигналом называют процесс изменения во времени физического состояния какого-либо объекта, который служит для отображения, регистрации и передаче сообщений.

Сигналами могут быть напряжение, ток, напряженность поля. В большинстве случаев носителями радиотехнических сигналов являются электромагнитные колебания. Математической моделью сигнала обычно служит функциональная зависимость аргументом которой является время (зависимость напряжения в цепи от времени). Для детерминированных сигналов на основании математической модели можно узнать мгновенное значение сигнала в любой момент времени. Примером детерминированного сигнала является синусоидальное напряжение, f=50Гц w=314с^-1.

Импульсные сигналы существуют только в пределах конечного отрезка времени. Примеры импульсных сигналов: видеоимпульс (рис. 2а) и радиоимпульс (рис.2б).

Если физический процесс порождающий сигнал развивается во времени таким образом, что его можно измерять в любые моменты времени, то сигналы такого класса называют аналоговым. Аналоговый сигнал можно представить графиком его изменения во времени , то есть осциллограммой.

Дискретные сигналы описываются совокупностью отсчетов через равные промежутки времени. Пример дискретного сигнала показан на рисунке 3.

Цифровые сигналы являются особой разновидностью дискретных. Отсчетные значения представляются в виде чисел. Обычно используются двоичные числа с некоторой размерностью. Пример цифрового сигнала приведен в таблице 1.

Аналоговые сигналы.

Периодический сигнал S(t), период Т обладает следующим свойством: S(t)=S(t±nT) n=1,2,.. Пример периодического сигнала показан на рисунке 4.

Период сигнала связан с частотой f и круговой частотой w следующим соотношением: f=1/T=w/2π. Другие примеры периодических сигналов показаны на рисунке 5.


  1. Вопрос. Модулированный сигнал. Основы модуляции.
Для передачи низкочастотным сигналов, например звуковых, по радиоканалу применяются модулированные сигналы. Прямая передача низкочастотного сигнала по радиоканалу невозможна, так как длинна волны для низких частот слишком большая и аппаратура для передачи такой волны будет громоздкой.

В модулированном сигнале амплитуда, частота и фаза синусоидального ВЧ сигнала изменяется в такт с НЧ. НЧ сигнал накладывается на несущий.

1. Амплитудная модуляция (АМ).

S(t) - звуковой сигнал, - РЧ сигнал, несущая, М - коэффициент модуляции.

Пример модулированного сигнала показан на рисунке 6.

2. Частотная модуляция (ЧМ:FM). Амплитуда несущий остается неизменной, а в такт с модулируемым сигналом изменяется частота несущей.

Осциллограмма частотно-модулированного сигнала показана на рисунке 7.

3. Фазовая модуляция (ФМ:PM). . осциллограмма ФМ сигнала показана на рисунке 8.

Во время положительного полупериода фаза модулированные колебания опережают по фазе колебания несущей частоты, при этом период колебаний уменьшается, и частота увеличивается. Во время отрицательного периода модулирующего напряжения фаза модулированного колебания отстает по фазе от колебаний несущей частоты. Таким образом ФМ является одновременно и ЧМ. Для ЧМ справедливо обратное суждение: частотная модуляция является одновременно фазовой модуляцией. ФМ применяется в профессиональной радиосвязи.

Сигма и дельта функции.

Сигма функция задается следующим выражением:

Дельта функция – импульс бесконечно большой амплитуды и бесконечно малой длительности. (рис. 10).

Дельта-функция является производной от сигма-функции.

Если сигнал, задаваемый непрерывной функцией умножить на дельта-функции и проинтегрировать во времени , то результатом будет мгновенное значение сигнала в точке, где сосредоточен дельта-импульс.

Из фильтрующих свойств дельта-функции следует схема измерителя мгновенного значения сигнала.

Сигма и дельта функции применяются для анализа прохождения аналоговой и цифровых сигналов через линейные системы. Отклик системы, ели на нее подан дельта-импульс, называется импульсной характеристикой системы H(t).


  1. Вопрос. Мощности и энергии сигнала.
Мощность выделяющаяся на резисторе сопротивлением R, если к нему приложено напряжение u определяется как W=(u^2)/R.

Если к резистору приложено не постоянное напряжение, а переменный сигнал s(t), то мощность так же будет переменной (мгновенная мощность).

В теории сигналов обычно полагают, что R=1. w=s(t) ^2. Чтобы найти энергию сигнала необходимо проинтегрировать мощность по всему диапазону;

Для бесконечных во времени сигналов среднюю мощность можно определить следующим образом:

W=[Вт], E=[(В^2)*c]

Именно такая энергия выделяется на резисторе сопротивлением 1 ом, если к нему приложено напряжение s(t).

Если сигнал излучается на некотором интервале T, то рассматривается средняя мощность сигнала.

Спектральный анализ сигналов.


  1. Вопрос. Разложение аналогового сигнала в ряд Фурье.
Разложение в ряд Фурье заключается в представление периодического сигнала в виде суммы синусоидальных сигналов.

Пример представления пилообразного сигнала в виде суммы синусоидальных сигналов с различной амплитудой и фазой представлен на рис. 12.

Введем основную частоту периодического сигнала с периодом T: w_1=2pi/T. Периодический сигнал при разложении в ряд Фурье представляется в виде суммы синусоидальных сигналов или гармоник, с частотами кратными основной частоте: 2w_1, 3w_1... Амплитуды этих сигналов называются коэффициентами разложения. Ряд Фурье записывается в виде суммы гармоник:

Вещественная форма ряда Фурье:

Используя известную форму записи из курса электротехники в виде комплексного числа , ряд Фурье представляется в виде:

В данное выражение входят гармоники с отрицательными частотами. Отрицательная частота – это не физическое понятие, она связана со способом представления комплексных чисел. Так как сумма гармоник должна быть действительным числом, то каждой гармонике соответствует комплексно сопряженная гармоника с –ω. По абсолютному значению амплитуды гармоники с положительными и отрицательными частотами равны.


  1. Вопрос. Спектральные диаграммы.
Спектральные диаграммы – графики, изображающие коэффициенты ряда Фурье в вещественной форме.

Различают амплитудные и фазовые спектральные диаграммы. По горизонтальной оси откладывают частоты гармоник, по вертикали – амплитуды (фазы). Если изображен модуль ряда Фурье в комплексной форме, то по оси Х откладывают положительную и отрицательную круговую частоту ω.

Пример спектра аналогового периодического сигнала. (ШИМ)

Рассмотрим последовательность прямоугольных импульсов с периодом Т, длительностью τ и амплитудой А.

Скважность.

Осциллограмма такого сигнала оказана на рисунке 13.

Постоянная составляющая прямоугольного сигнала.

b n = 0.

Спектральная диаграмма для последовательности прямоугольных импульсов показана на рис. 14.

Из спектра диаграммы видно, что с увеличением скважности уменьшается длительность импульса. Последовательность прямоугольных импульсов имеет более богатый спектральный состав, в спектре присутствуют больше гармоник и больше амплитуд. Таким образом, сокращение длительности импульса приводит к расширению спектра. Сигналы с широким спектром могут создавать помехи.

Вычисление ряда Фурье производится с помощью математических пакетов.

Преобразование Фурье.

Применяется для расширения области допустимых сигналов.

Различают прямое и обратное преобразование.


  1. Вопрос. Прямое преобразование (переход от сигнала к спектру).
Разложение в ряд Фурье позволяет получить спектр только для периодических сигналов. Преобразование Фурье расширяет область применения спектрального анализа на непериодические сигналы.

Пусть s(t) – одиночный импульсный сигнал конечной длительности. Дополним его таким же, периодически следующим сигналом, с периодом Т. Получим последовательность импульсов (рис.15).

Чтобы перейти к преобразованию Фурье и найти спектр одиночного импульса необходимо найти предельный вид ряда Фурье в комплексной форме при

Расчет спектра:

Физический смыл спектральной плотности состоит в том, что она является коэффициентом пропорциональности между длинной малого интервала частот Δf в близи частоты f 0 и амплитуды гармонического сигнала с частотой f 0 . Сигнал s(t) как бы складывается из множества разных синусоидальных сигналов малой амплитуды. Спектр плотности показывает вклад в сигнал элементарных синусоидальных сигналов каждой частоты.

Спектр плотности вероятности является комплексным числом и отображается кривой на комплексной плоскости.

Действительное число – амплитудный спектр

Спектр мощности

Фазовый спектр

Свойства преобразования Фурье


  1. Линейность – спектр суммы нескольких сигналов умножить на постоянные коэффициенты равен сумме этих сигналов. Если амплитуда сигнала меняется в А раз, то его спектральная плотность тоже меняется в А раз.

  1. Свойство вещественной и мнимой частей спектра. Вещественная часть спектра, то есть амплитудный спектр – четный функция частоты. Амплитудный спектр симметричен относительно нулевой частоты. Мнимая часть спектра – нечетная функция частоты. Фазовый спектр антисимметричен относительно нулевой частоты.

  1. Смещение сигнала во времени. При смещении сигнала во времени амплитудный спектр не меняется, а фазовый спектр смещается по фазе.


Спектр произведения сигналов равен свертке спектров и наоборот.

Свойство применяется для отыскания сигнала на выходе , если известна АЧХ.

Линейная система и сигналы на ее входе и выходе показаны на рисунке 20.


  1. Спектр дельта функции.

В спектре дельта-импульса содержатся все частоты от 0 до .


  1. Спектр производной и интеграла.
Дифференциация сигналов приведет к расширению спектра, интегрирование – к сжатию (рис.21).


  1. Связь с рядами Фурье.
Комплексная амплитуда к-ой гармоники ряда Фурье связана со спектральной плотностью так:

Зная преобразование для одного периода периодического сигнала можно вычислить его разложение в ряд Фурье.

Пример вычисления спектра импульсного сигнала.

Вычислим спектр прямоугольного видео импульса с амплитудой и длительностью . Импульс расположен симметрично относительно начала отсчета (рис. 22).

Переходим от круговой частоты к частоте f.

Амплитудный спектр показан на (рис 23).

Фазовый спектр показан на (рис 24).

Спектр мощности показан на (рис 25).


  1. Вопрос. Обратное преобразование Фурье.
Служит для нахождения сигнала по спектру.

Условие существования спектральной плотности сигнала.

Спектральный анализ интегрируемых сигналов.

Сигнал можно сопоставить спектральную плотность если сигнал абсолютно интегрирован.

К абсолютно интегрированному сигналу не относятся гармонические колебания и постоянный ток.

Примеры абсолютно интегрируемых и неинтегрируемых сигналов на (рис. 16).

Спектры таких сигналов представляются через дельта-функции.

Спектр сигнала постоянного уровня А представляет собой дельта-импульс, расположенный на нулевой частоте ().

Физический смысл данного выражения – сигнал, постоянный по модулю и по времени имеет постоянную составляющую только на нулевой частоте.

Спектр синусоидального сигнала.

Любой периодический сигнал можно представить рядом Фурье в комплексной форме, то есть в виде суммы синусоидальных сигналов.

Спектры постоянного тока, синусоидального и периодического сигнала показаны на (рис. 17).

На анализаторе спектра спектр периодического сигнала будет наблюдаться в виде последовательности остроконечных импульсов. Амплитуды данных импульсов пропорциональны амплитудам гармоник. Типичный вид спектра представлен на (рис. 18).

Спектральный анализ можно применять и к случайным сигналам. Для них рассматривается спектр мощности . Для примера рассмотрим белый шум (рис. 1).