Основные характеристики радиотехнических сигналов. Основы цифровой обработки сигнала. Вопрос. Радиотехнические сигналы. Классификация. Описание сигналов посредством математических моделей

PAGE 24

РОСТОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

СЕРВИСА И ТУРИЗМА

________________________________________________________________

Кафедра Радиоэлектроника

Лазаренко С.В.

ЛЕКЦИЯ № 1

по дисциплине “Радиотехнические цепи и сигналы”

Ростов-на-Дону

2010

ЛЕКЦИЯ 1

ВВЕДЕНИЕ. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СИГНАЛОВ

По дисциплине РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Время: 2 часа

Изучаемые вопросы: 1. Предмет, цель и задачи курса

2. Краткий обзор курса, связь с другими дисциплинами

3. Краткая история развития дисциплины

4. Общая методика работы над курсом, виды занятий,

формы отчетности, учебная литература

5 Энергетические характеристики сигнала

6 Корреляционные характеристики детерминированных сигналов

7 Геометрические методы в теории сигналов

8 Теория ортогональных сигналов. Обобщенный ряд Фурье

В данной лекции реализуются следующие элементы квалификационной характеристики:

Студент должен знать основные законы, принципы и методы анализа электрических цепей, а также методы моделирования электрических цепей, схем и устройств.

Студент должен владеть приемами выполнения расчетов цепей в установившемся и переходном режимах.

1. ПРЕДМЕТ И ЗАДАЧИ КУРСА

Предметом изучения дисциплины РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ являются электромагнитные процессы в линейных и нелинейных радиотехнических цепях, методы расчета цепей в установившемся и переходном режимах, непрерывные и дискретные сигналы и их характеристики.

От практики дисциплина берет объекты исследования - типовые цепи и сигналы, от физики - ее законы электромагнитного поля, от математики - аппарат исследования.

Целью изучения дисциплины является привитие студентам навыка расчета простейших радиотехнических цепей и ознакомление их с современными алгоритмами оптимальной обработки сигналов.

В результате изучения дисциплины каждый студент должен

ИМЕТЬ ПРЕДСТАВЛЕНИЕ:

О современных алгоритмах оптимальной обработки сигналов;

О тенденциях развития теории радиотехнических цепей и сигналов,

ЗНАТЬ:

Классификацию радиотехнических сигналов;

Временные и спектральные характеристики детерминированных сигналов;

Случайные сигналы, их характеристики, корреляционный и спектральный анализ случайных сигналов;

Дискретные сигналы и их характеристики;

Алгоритмы цифровой обработки сигналов,

УМЕТЬ ИСПОЛЬЗОВАТЬ:

Методы аналитического и численного решения задач прохождения сигналов через линейные и нелинейные цепи;

Методы спектрального и корреляционного анализа детерминированных и случайных сигналов,

ВЛАДЕТЬ:

Приемами измерения основных параметров и характеристик радиотехнических цепей и сигналов;

Приемами анализа прохождения сигналов через цепи,

ИМЕТЬ ОПЫТ:

Исследования прохождения детерминированных сигналов через линейные стационарные цепи, нелинейные и параметрические цепи;

Расчета простейших радиотехнических цепей.

Эксплуатационная направленность подготовки по дисциплине обеспечивается проведением лабораторного практикума, в ходе которого каждому студенту прививаются практические навыки:

Работы с электро- и радиоизмерительными приборами;

Проведения экспресс-анализа нештатных ситуаций в работе фрагментов радиотехнических цепей по результатам измерений.

2 КРАТКИЙ ОБЗОР КУРСА, СВЯЗЬ С ДРУГИМИ ДИСЦИПЛИНАМИ

Дисциплина "Радиотехнические цепи и сигналы" базируется на знан и ях "Математики", "Физики", "Информатики", и обеспечивает усвоение ст у дентами общенаучных и специальных дисциплин, "Метрология и радиоизм е рения", "Устройства генерирования и формирования радиосигналов", "Устройства приема и обработки сигналов", "Основы телевидения и виде о техники", "Статистическая теория радиотехнических систем", "Радиотехн и ческие системы", курсовое и дипломное прое к тирование.

Изучение дисциплины "Радиотехнические цепи и сигналы" развивает у студентов инженерное мышление, готовит их к освоению специальных дисциплин.

Преподавание дисциплины направлено:

На глубокое изучение студентами основных законов, принципов и методов анализа электрических цепей, физической сущности электромагнитных процессов в устройствах радиоэлектроники;

На привитие твердых навыков по анализу установившихся и переходных процессов в цепях, а также по проведению экспериментов с целью определения характеристик и параметров электрических цепей.

Дисциплина состоит из 5 разделов:

1 Сигналы;

2 Прохождение сигналов через линейные цепи;

3 Нелинейные и параметрические цепи;

4 Цепи с обратными связями и автоколебательные цепи

5 Принципы цифровой фильтрации сигналов

3. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ДИСЦИПЛИНЫ

Возникновение теории электрических и радиотехнических цепей неразрывно связано с практикой: со становлением электротехники, радиотехники и радиоэлектроники. В развитие указанных областей и их теории внесли свой вклад многие отечественные и зарубежные ученые.

Явления электричества и магнетизма были известны человеку давно. Однако лить во второй половине ХУШ века они начали изучаться серьезно, с них стали срываться ореолы таинственности и сверхъестественности.

Уже Михаил Васильевич Ломоносов (1711 - 1765) предполагал, что в природе существует одно электричество и что электрические и магнитные явления органически связаны между собой. Большой вклад в науку об электричестве внес русский академик Франс Эпинус (1724 - 1802).

Бурное развитие учения об электромагнитных явлениях произошло в XIX веке, вызванное интенсивным развитием машинного производства. В это время человечество изобретает для своих практических нужд ТЕЛЕГРАФ, ТЕЛЕФОН, ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ, СВАРКУ МЕТАЛЛОВ, ЗЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ и ЭЛЕКТРОДВИГАТЕЛИ.

Укажем в хронологической последовательности наиболее яркие этапы развития учения об электромагнетизме.

В 1785 году французский физик Кулон Шарль Ответ (1736 - 1806) установил закон механического взаимодействия электрических зарядов (закон Кулона) .

В 1819 году датчанин Эрстед Ханс Кристиан (1777 - 1851) обнаружил действие электрического тока на магнитную стрелку, а в 1820 году французский физик Ампер Андре Мари (1775 - 1836) установил количественную меру (силу), действующую со стороны магнитного поля на участок проводника (закон Ампера) .

В 1827 году немецкий физик Ом Георг Симон (1787 - 1854) получил экспериментально связь между тоном и напряжением для участка металлического проводника (закон Ома).

В 1831 году английский физик Фарадей Майкл (1791 - 1867) установил закон электромагнитной индукции, а в 1832 году русский физик Ленц Эмилий Христианович (1804 - 1865) сформулировал принцип общности и обратимости электрических и магнитных явлений.

В 1873 году на основании обобщения экспериментальных данных по электричеству и магнетизму английский ученый Дж. К. Максвелл выдвинул гипотезу существования электромагнитных волн и разработал теорию для их описания.

В 1888 году немецкий физик Герц Генрих Рудольф (1857 - 1894) экспериментально доказал существование излучения электромагнитных волн.

Практическое использование радиоволн впервые осуществил русский ученый Александр Степанович Попов (1859 - 1905), который 7 мая 1895 года продемонстрировал на заседании Русского физико - химического общества передатчик (искровой прибор) и приемник электромагнитных волн (грозоотметчик) .

В конце XIX века в России работали известные инженеры и ученые Лодыгин Александр Николаевич (1847 - 1923), создавший первую в мире лампу накаливания (1873); Яблочков Павел Николаевич (1847 - 1894), разработавший электросвечу (1876); Доливо-Добровольский Михаил Осипович (1861 - 1919), создавший трехфазную систему токов (1889) и основавший современную энергетику.

В XIX веке анализ электрических цепей составлял одну из задач электротехники. Электрические цепи изучались и рассчитывались по чисто физическим законам, описывающим их поведение под действием электрических зарядов, напряжений и токов. Эти физические законы легли в основу теории электрических и радиотехнических цепей.

В 1893 - 1894 годах трудами Ч.Штейнметца и А.Кеннелли был развит так называемый символический метод, который сначала был применен для механических колебаний в физике, а затем перенесен в электротехнику, где комплексные величины стали использоваться для обобщенного представления амплитудно-фазовой картины установившегося синусоидального колебания.

На основе работ Герца (1888), а затем Пупина (1892) по резонансу и настройке RLC-контуров и связанных колебательных систем возникли проблемы определения передаточных характеристик цепей.

В 1889 году А.Кеннелли разработал формально - математический метод эквивалентного преобразования электрических цепей.

Во второй половине XIX века Максвелл и Гельмгольц разработали методы контурных токов и узловых напряжений (потенциалов), которые легли в основу матричных и топологических методов анализа более позднего времени. Весьма важным было определение Гельмгольцем принципа СУПЕРПОЗИЦИИ, т.е. отдельного рассмотрения нескольких простых процессов в одной и той же цепи с последующим алгебраическим суммированием этих процессов в более сложное электрическое явление в той же цепи. Метод суперпозиции позволил теоретически решать большой круг задач, которые до этого считались неразрешимыми и поддавались только эмпирическому рассмотрению.

Следующим существенным шагом в становлении теории электрических и радиотехнических цепей было введение в 1899 году понятия комплексного сопротивления электрической цепи переменному току.

Важным этапом формирования теории электрических и радиотехнических цепей было исследование частотных характеристик цепей. Первые идеи в этом направлении также связаны с именем Гельмгольца, который использовал для анализа принцип суперпозиции и метод гармонического анализа, т.е. применил разложение функции в ряд Фурье.

В конце XIX века были введены понятия Т- и П- образных цепей (их стали называть четырехполюсниками) . Почти одновременно с этим возникло понятие электрических фильтров.

Фундамент современной теории радиотехнических цепей и радиотехники вообще заложили наши соотечественники М.Б.Шулейкин, Б.А.Веденский, А.И.Берг, А.Л.Минц, В.А.Котельников, А.Н.Мандельштамм, Н.Д.Папалекси и многие другие.

4 ОБЩАЯ МЕТОДИКА РАБОТЫ НАД КУРСОМ, ВИДЫ ЗАНЯТИЙ, ФОРМЫ ОТЧЕТНОСТИ, УЧЕБНАЯ ЛИТЕРАТУРА

Изучение дисциплины осуществляется на лекциях, лабораторных и практических занятиях.

Лекции являются одним из важнейших видов учебных занятий и с о ставляют основу теоретического обучения. Они дают систематизированные основы научных знаний по дисциплине, концентрируют внимание обуча е мых на наиболее сложных и узловых вопросах, стимулируют их активную познавательную деятельность, формируют творческое мышление.

На лекциях наряду с фундаментальностью обеспечивается необход и мая степень практической направленности обучения. Изложение материала увязывается с войсковой практикой, конкретными объектами специальной техники, в которых находят применение электрические цепи.

Лабораторные занятия имеют целью обучить студентов методам эк с периментальных и научных исследований, привить навыки научного анализа и обобщения полученных результатов, навыки работы с лабораторным об о рудованием, контрольно-измерительными приборами и вычислительной те х никой.

При подготовке к лабораторным занятиям студенты самостоятельно или (при необходимости) на целевых консультациях изучают соответству ю щий теоретический материал, общий порядок проведения исследований, оформляют бланки отчетов (вычерчивают схему лабораторной установки, необходимые таблицы).

Эксперимент является основной частью лабораторной работы и реал и зуется каждым студентом самостоятельно в соответствии с руководством к лабораторной работе. Перед проведением эксперимента проводится ко н трольный опрос в форме летучки, цель которого - проверка качества подг о товки студентов к лабораторной работе. При этом необходимо обращать внимание на знание теоретического материала, порядка выполнения работы, характер ожидаемых результатов. При приеме отчетов следует учитывать а к куратность оформления, соблюдение студентами требований ЕСКД, нал и чие и правильность необходимых выводов.

Практические занятия проводятся с целью выработки навыков в реш е нии задач, производстве расчетов. Главным их содержанием является пра к тическая работа каждого студента. На практические занятия выносятся зад а чи, имеющие прикладной характер. Повышение уровня компьютерной по д готовки осуществляется на практических занятиях путем выполнения расч е тов с помощью программируемых микрокалькуляторов или персональных ЭВМ. В начале каждого занятия проводится контрольный опрос, цель кот о рого - проверка подготовленности студентов к занятию, а также - активиз а ция их познавательной деятельности.

В процессе усвоения содержания дисциплины у студентов системат и чески формируются методические навыки и навыки самостоятельной работы. Студентам прививаются умения правильно задать вопрос, поставить пр о стейшую задачу, доложить сущность проделанной работы, пользоваться до с кой и наглядными пособиями.

Для привития первичных навыков подготовки и проведения учебных занятий предусматривается привлечение студентов в качестве помощников руководителя лабораторных занятий.

К числу важнейших направлений активизации познавательной де я тельности студентов относится проблемное обучение. Для его реализации с о здаются проблемные ситуации по курсу в целом, по отдельным темам и в о просам, которые реализуются:

С помощью введения новых проблемных понятий с показом того, как исторически они появились и как они применяются;

Путем столкновения студента с противоречиями между новыми явл е ниями и старыми понятиями;

С необходимостью выбора нужной информации;

Использованием противоречий между имеющимися знаниями по р е зультатам решения и требованиями практики;

Предъявлением фактов и явлений, необъяснимых на первый взгляд с

помощью известных законов;

Путем выявления межпредметных связей и связей между явлениями.

В процессе изучении дисциплины предусмотрен контроль усвоения материала на всех практических видах занятий в форме летучек, а по темам 1 и 2 форме двухчасовой контрольной работы.

Для определения качества обучения в целом по дисциплине проводи т ся экзамен. К экзамену допускаются студенты, выполнившие все требования учебной программы, отчитавшиеся о всех лабораторных работах, получи в шие положительные оценки по курсовой работе. Экзамены проводятся в ус т ной форме с необходимыми письменными пояснениями на классной доске (формулы, графики и т.п.). На подготовку каждому студенту предоставляется время не более 30 минут. Для подготовки к ответу студенты могут использ о вать разрешенные начальником кафедры методические и справочные мат е риалы. Подготовка к ответу может осуществляться письменно. Начальник кафедры может освобождать от сдачи экзамена студентов, показавших о т личные знания по результатам текущего контроля, с выставлением им оце н ки "отлично".

Таким образом, дисциплина "Радиотехнические цепи и сигналы" явл я ется системой концентрированных и в то же время достаточно полных и з а вершенных знаний, позволяющих радиоинженеру свободно ориентироваться в важнейших вопросах эксплуатации специальных радиотехнических устройств и систем.

ОСНОВНАЯ УЧЕБНАЯ ЛИТЕРАТУРА:

1. БАСКАКОВ С.И. Радиотехнические цепи и сигналы. 3-е издание. М.: Высшая школа, 2000 .

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

2. БАСКАКОВ С.И. Радиотехнические цепи и сигналы. Руководство к решению задач: Учеб. пособие для радиотехн. спец. вузов. - 2-е издание. М.: Высшая шк о ла, 2002.

3. ПОПОВ В.П. Основы теории цепей. Учеб. для вузов.-3-е изд. М.: Высшая шк о ла, 2000 .

5 ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИГНАЛА

Основными энергетическими характеристиками вещественного сигнала являются:

1) мгновенная мощность, определяемая как квадрат мгновенного значения сигнала

Если — напряжение или ток, то — мгновенная мощность, выделяемая на сопротивлении и 1 Ом.

Мгновенная мощность не аддитивна, т. е. мгновенная мощность суммы сигналов не равна сумме их мгновенных мощностей:

2) энергия на интервале времени выражается как интеграл от мгновенной мощности

3) средняя мощность на интервале определяется значением энергии сигнала на этом интервале, отнесенной к единице времени

где.

Если сигнал задан на бесконечном интервале времени, то средняя мощность определяется следующим образом:

Системы передачи информации проектируются так, чтобы информация передавалась с искажениями меньше заданных при минимальной энергии и мощности сигналов.

Энергия и мощность сигналов, определяемые на произвольном интервале времени, могут быть аддитивными, если сигналы на этом интервале времени ортогональны. Рассмотрим два сигнала и, которые заданы на интервале времени . Энергия и мощность суммы этих сигналов выражаются так:

, (1)

. (2)

Здесь, и, — энергия и мощность первого и второго сигналов, — взаимная энергия и взаимная мощность этих сигналов (или энергия и мощность их взаимодействия) . Если выполняются условия

то сигналы и на интервале времени называют ортогональными, и выражения (1) и (2) принимают вид

Понятие ортогональности сигналов обязательно связано с интервалом их определения.

Применительно к комплексным сигналам также пользуются понятиями мгновенной мощности, энергии и средней мощности. Эти величины вводят так, чтобы энергетические характеристики комплексного сигнала были действительными величинами.

1. Мгновенная мощность определяется произведением комплексного сигнала на комплексно-сопряженный сигнал

2. Энергия сигнала на интервале времени по определению равна

3. Мощность сигнала на интервале определяется как

Два комплексных сигнала и, заданные на интервале времени, являются ортогональными, если их взаимная мощность (или энергия) равна нулю.

6 КОРРЕЛЯЦИОННЫЕ ХАРАКТЕРИСТИКИ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Одной из важнейших временных характеристик сигнала является автокорреляционная функция (АКФ), позволяющая судить о степени связи (корреляции) сигнала с его сдвинутой по времени копией.

Для вещественного сигнала, заданного на интервале времени и ограниченного по энергии, корреляционная функция определяется следующим выражением:

, (3)

где - величина временного сдвига сигнала.

Для каждого значения автокорреляционная функция выражается некоторой числовой величиной.

Из (3) следует, что АКФ является четной функцией временного сдвига. Действительно, заменяя в (3) переменную на, получим

При сходство сигнала с его несдвинутой копией наибольшее и функция достигает максимального значения, равного полной энергии сигнала

С увеличением функция всех сигналов, кроме периодических, убывает (не обязательно монотонно) и при относительном сдвиге сигналов и на величину, превышающую длительность сигнала, обращается в нуль.

Автокорреляционная функция периодического сигнала сама является периодической функцией с тем же периодом.

Для оценки степени подобия двух сигналов и используется взаимная корреляционная функция (ВКФ), которая определяется выражением

Здесь и — сигналы, заданные на бесконечном интервале времени и обладающие конечной энергией.

Значение не меняется, если вместо задержки сигнала рассматривать опережение первого сигнала.

Автокорреляционная функция является частным случаем ВКФ, когда сигналы и одинаковы.

В отличие от функция в общем случае не является четной относительно и может достигать максимума три любом.

Значение определяет взаимную энергию сигналов и

7 ГЕОМЕТРИЧЕСКИЕ МЕТОДЫ В ТЕОРИИ СИГНАЛОВ

При решении многих теоретических и прикладных задач радиотехники возникают такие вопросы: 1) в каком смысле можно говорить о величине сигнала, утверждая, например, что один сигнал значительно превосходит другой; 2) можно ли объективно оценивать, насколько два неодинаковых сигнала «похожи» друг на друга?

В XX в. был создан функциональный анализ — раздел математики, обобщающий наши интуитивные представления о геометрической структуре пространства. Оказалось, что идеи функционального анализа дают возможность создать стройную теорию сигналов, в основе которой лежит концепция сигнала как вектора в специальным образом сконструированном бесконечномерном пространстве.

Линейное пространство сигналов. Пусть - множество сигналов. Причина объединения этих объектов — наличие некоторых свойств, общих для всех элементов множества.

Исследование свойств сигналов, образующих такие множества, становится особенно плодотворным тогда, когда удается выражать одни элементы множества через другие элементы. Принято говорить, что множество сигналов наделено при этом определенной структурой. Выбор той или иной структуры должен быть продиктован физическими соображениями. Так, применительно к электрическим колебаниям известно, что они могут складываться, а также умножаться на произвольный масштабный коэффициент. Это дает возможность в множествах сигналов ввести структуру линейного пространства.

Множество сигналов образует вещественное линейное пространство, если справедливы следующие аксиомы:

1. Любой сигнал при любых принимает лишь вещественные значения.

2. Для любых и существует их сумма, причем также содержится в. Операция суммирования коммутативна: и ассоциативна: .

3. Для любого сигнала и любого вещественного числа определен сигнал =.

4. Множество М содержит особый нулевой элемент  , такой, что  для всех.

Если математические модели сигналов принимают комплексные значения, то, допуская в аксиоме 3 умножение на комплексное число, приходим к понятию комплексного линейного пространства.

Введение структуры линейного пространства, является первым шагом на пути к геометрической трактовке сигналов. Элементы линейных пространств часто называют векторами, подчеркивая аналогию свойств этих объектов и обычных трехмерных векторов.

Ограничения, налагаемые аксиомами линейного пространства, весьма жестки. Далеко не каждое множество сигналов оказывается линейным пространством.

Понятие координатного базиса. Как и в обычном трехмерном пространстве, в линейном пространстве сигналов можно выделить специальное подмножество, играющее роль координатных осей.

Говорят, что совокупность векторов { }, принадлежащих, является линейно независимой, если равенство

возможно лишь в случае одновременного обращения в нуль всех числовых коэффициентов.

Система линейно независимых векторов образует координатный базис в линейном пространстве. Если дано разложение некоторого сигнала в виде

то числа {} являются проекциями сигнала относительно выбранного базиса.

В задачах теории сигналов число базисных векторов, как правило, неограниченно велико. Такие линейные пространства называют бесконечномерными. Естественно, что теория этих пространств не может быть вложена в формальную схему линейной алгебры, где число базисных векторов всегда конечно.

Нормированное линейное пространство. Энергия сигнала. Для того чтобы продолжить и углубить геометрическую трактовку теории сигналов, необходимо ввести новое понятие, которое по своему смыслу соответствует длине вектора. Это позволит не только придать точный смысл высказыванию вида «первый сигнал больше второго», но и указать, насколько он больше.

Длину вектора в математике называют его нормой. Линейное пространство сигналов является нормированным, если каждому вектору однозначно сопоставлено число — норма этого вектора, причем выполняются следующие аксиомы нормированного пространства:

1. Норма неотрицательна, т. е. . Норма тогда и только тогда, если  .

2. Для любого числа справедливо равенство.

3. Если и — два вектора из , то выполняется неравенство треугольника: .

Можно предложить разные способы введения нормы сигналов. В радиотехнике чаще всего полагают, что вещественные аналоговые сигналы имеют норму

(4)

(из двух возможных значений корня выбирается положительное). Для комплексных сигналов норма

где * — символ комплексно-сопряженной величины. Квадрат нормы носит название энергии сигнала

Именно такая энергия выделяется в резисторе с сопротивлением 1 Ом, если на его зажимах существует напряжение.

Определять норму сигнала с помощью формулы (4) целесообразно по следующим причинам:

1. В радиотехнике о величине сигнала часто судят, исходя из суммарного энергетического эффекта, например количества теплоты, выделяемой в резисторе.

2. Энергетическая норма оказывается «нечувствительной» к изменениям формы сигнала, может быть, и значительным, но происходящим на коротких отрезках времени.

Линейное нормированное пространство с конечной величиной нормы вида (1.15) носит название пространства функций с интегрируемым квадратом и кратко обозначается.

8 ТЕОРИЯ ОРТОГОНАЛЬНЫХ СИГНАЛОВ. ОБОБЩЕННЫЙ РЯД ФУРЬЕ

Введя во множестве сигналов структуру линейного пространства, определив норму и метрику, мы, тем не менее, лишены возможности вычислить такую характеристику, как угол между двумя векторами. Это удается сделать, сформулировав важное понятие скалярного произведения элементов линейного пространства.

Скалярное произведение сигналов. Напомним, что если в обычном трехмерном пространстве известны два вектора и, то квадрат модуля их суммы

где - скалярное произведение этих векторов, зависящее от угла между ними.

Действуя по аналогии, вычислим энергию суммы двух сигналов и:

. (5)

В отличие от самих сигналов их энергии неаддитивны - энергия суммарного сигнала содержит в себе так называемую взаимную энергию

. (6)

Сравнивая между собой формулы (5) и (6), определим скалярное произведение вещественных сигналов и:

Скалярное произведение обладает свойствами:

  1. , где - вещественное число;

Линейное пространство с таким скалярным произведением, полное в том смысле, что оно содержит в себе все предельные точки любых сходящихся последовательностей векторов из этого пространства, называется вещественным гильбертовым пространством.

Справедливо фундаментальное неравенство Коши — Буняковского

Если сигналы принимают комплексные значения, то можно определить комплексное гильбертово пространство, введя в нем скалярное произведение по формуле

такое, что.

Ортогональные сигналы и обобщенные ряды Фурье. Два сигнала и называются ортогональными, если их скалярное произведение, а значит, и взаимная энергия равны нулю:

Пусть — гильбертово пространство сигналов с конечным значением энергии. Эти сигналы определены на отрезке времени, конечном или бесконечном. Предположим, что на этом же отрезке задана бесконечная система функций , ортогональных друг другу и обладающих единичными нормами:

Говорят, что при этом в пространстве сигналов задан ортонормированный базис.

Разложим произвольный сигнал в ряд:

(7)

Представление (7) называется обобщенным рядом Фурье сигнала в выбранном базисе.

Коэффициенты данного ряда находят следующим образом. Возьмем базисную функцию с произвольным номером, умножим на нее обе части равенства (7) и затем проинтегрируем результаты по времени:

. (8)

Ввиду ортонормированности базиса в правой части равенства (8) останется только член суммы с номером, поэтому

Возможность представления сигналов посредством обобщенных рядов Фурье является фактом большого принципиального значения. Вместо того, чтобы изучать функциональную зависимость в несчетном множестве точек, мы получаем возможность характеризовать эти сигналы счетной (но, вообще говоря, бесконечной) системой коэффициентов обобщенного ряда Фурье.

Энергия сигнала, представленного в форме обобщенного ряда Фурье. Рассмотрим некоторый сигнал, разложенный в ряд по ортонормированной базисной системе:

и вычислим его энергию, непосредственно подставив этот ряд в соответствующий интеграл:

(9)

Поскольку базисная система функций ортонормирована, в сумме (9) отличными от нуля окажутся только члены с номерами. Отсюда получается замечательный результат:

Смысл этой формулы таков: энергия сигнала есть сумма энергий всех компонент, из которых складывается обобщенный ряд Фурье.

Старший преподаватель кафедры Радиоэлектроника С. Лазаренко

Термин “сигнал” часто встречается не только в научно-технических вопросах, но и в повседневной жизни. Иногда, не задумываясь о строгости терминологии, мы отождествляем такие понятия, как сигнал, сообщение, информация. Обычно это не приводит к недоразумениям, поскольку “сигнал” происходит от латинского термина “signum” - ”знак”, имеющий широкий смысловой диапазон. Сигналы представляют собой физические средства, передающие сообщения. Поскольку электрические сигналы наиболее удобны, их передача используется во многих сферах деятельности человека .

Тем не менее, приступая к систематическому изучению теоретической радиоэлектроники, следует по возможности уточнить содержательный смысл понятия “сигнал”. В соответствии с принятой традицией сигналом называют процесс изменения во времени физического состояния какого-либо объекта, который служит для отображения, регистрации и передачи сообщений.

Круг вопросов, базирующихся на понятиях “сообщение”, ”информация”, весьма широк. Он является объектом пристального внимания инженеров, математиков, лингвистов, философов.

Приступая к изучению каких-либо объектов или явлений, в науке всегда стремятся провести их предварительную классификацию.

Сигналы можно описать посредством математических моделей. Для того чтобы сделать сигналы объектом теоретического изучения и расчетов, следует указать способ их математического описания, т.е. создать математическую модель исследуемого сигнала. Математической моделью сигнала может быть, например, функциональная зависимость, аргументом которой является время.

Создание модели (в данном случае физического сигнала) - первый существенный шаг на пути систематического изучения свойства явления. Прежде всего, математическая модель позволяет абстрагироваться от конкретной природы носителя сигнала. В радиотехнике одна и та же математическая модель с равным успехом описывает ток, напряжение, напряженность электромагнитного поля и т.д.

Существенная сторона абстрактного метода, базирующегося на понятии математической модели, заключена в том, что мы получаем возможность описывать именно те свойства сигналов, которые объективно выступают как определяюще важные. При этом игнорируется большое число второстепенных признаков. Например, в подавляющем большинстве случаев крайне затруднительно подобрать точные функциональные зависимости, которые соответствовали бы электрическим колебаниям, наблюдаемым экспериментально. Поэтому исследователь, руководствуясь всей совокупностью доступных ему сведений, выбирает из наличного арсенала математических моделей сигналов те, которые в конкретной ситуации наилучшим и самым простым образом описывают физический процесс. Итак, выбор модели - процесс в значительной степени творческий.

Зная математические модели сигналов, можно сравнивать эти сигналы между собой, устанавливать их тождество и различие, проводить классификацию.

С информационной точки зрения, детерминированные сигналы не содержат информации, но зато могут служить удобными моделями для изучения временных и спектральных свойств сигналов.

Реальные сигналы, содержащие информацию, выступают как случайные. Но математические модели таких сигналов чрезвычайно сложны и неудобны для изучения временных спектральных свойств сигналов.

Детерминированные сигналы делят на управляющие (низкочастотные) и радиосигналы (высокочастотные колебания). Управляющие сигналы появляются в месте возникновения информации (сигналы различных датчиков) и могут быть разделены на периодические и непериодические. Настоящая работа посвящена моделированию временных и спектральных свойств периодических сигналов.

При анализе периодических сигналов широкое распространение получило представление их по системам ортогональных функций, например, Уолша, Чебышева, Лаггера, синуса и косинуса и других.

Наибольшее распространение получила ортогональная система основных тригонометрических функций - синусов и косинусов кратных аргументов. Это объясняется рядом причин. Во-первых, гармоническое колебание является единственной функцией времени, сохраняющей свою форму при прохождении через любую линейную цепь (с постоянными параметрами). Изменяется лишь амплитуда и фаза колебания. Во-вторых, разложение сложного сигнала по синусам и по косинусам позволяет использовать символический метод, разработанный для анализа передачи гармонических колебаний через линейные цепи. По этим, а также и по некоторым другим причинам, гармонический анализ получил широкое распространение во всех отраслях современной науки и техники.

Если такой сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала представляют его спектр. Спектральная диаграмма периодического сигнала - это графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы, т.е. модули и аргументы комплексных коэффициентов ряда Фурье, которые полностью определяют структуру частотного спектра периодического колебания.

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала .

Классификация сигналов

модулятор сигнал радиотехнический спектр

Радиотехнические сигналы классифицируются:

По физической природе носителя информации:

электрические;

электромагнитные;

оптические;

акустические и др.;

По способу задания сигнала:

регулярные (детерминированные), заданные аналитической функцией;

нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей.

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы:

непрерывные (аналоговые), описываемые непрерывной функцией;

дискретные, описываемые функцией отсчётов, взятых в определённые моменты времени;

квантованные по уровню;

дискретные сигналы, квантованные по уровню (цифровые).

Виды сигналов

Аналоговый сигнал:

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС - гармонический сигнал - s(t) = A·cos (щ·t + ц).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретный сигнал:

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Дt называется интервалом дискретизации.

Квантованный сигнал:

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Д. Число этих уровней равно N (от 0 до N_1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел, кодирующих эти уровни, связаны соотношением n ? log2 (N).

Цифровой сигнал:

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Если записать эти целые числа в двоичной системе, получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.

Моделирование сигналов начинается, прежде всего, с их классификации. Существует несколько способов классификации, один из которых показан на рис. 1.6 .

Рис. 1.6.

Следует иметь в виду, что в радиотехнических цепях действуют электрические сигналы.

Электрические сигналы - это изменяющиеся во времени электрические токи или напряжения.

Все электрические сигналы делят на детерминированные и случайные.

Детерминированные сигналы описываются заданной функцией времени, значение которой в любой момент времени известно или может быть предсказано с вероятностью единица.

К детерминированным сигналам относятся так называемые испытательные или тестовые сигналы. Они широко используются при проведении различных исследований, при испытании радиоаппаратуры, в радиоизмерителыюй практике и т.п.

Для описания случайных сигналов используется вероятностный подход, при котором случайные сигналы рассматриваются как случайные процессы.

Случайный сигнал - это случайный процесс, изменяющийся в заданном динамическом диапазоне и принимающий любое значение из диапазона в вероятностью меньшей единицы.

Как правило, случайные сигналы представляют собой хаотические функции времени, а выбор его математической модели зависит от закона его распределения (равномерный, нормальный или гауссов, пуассоновский и т.п.).

Все случайные сигналы делятся на стационарные, нестационарные и эргодические.

Случайный процесс называется стационарным, если его статистические характеристики (как минимум математическое ожидание т и дисперсия а 2) не зависят от времени. В противном случае процесс не стационарен.

Процесс называется эргодическим, если его средняя по ансамблю реализаций равна средней по времени.

Все эргодические процессы являются стационарными, но не все стационарные процессы являются эргодическими.

Большинство случайных сигналов в радиотехнических системах являются эргодическими, поэтому для описания математической модели достаточно случайный сигнал усреднить по ансамблю реализаций или по времени.

Реальные сигналы всегда являются в какой - то мере случайными. Во - первых, сигнал всегда искажается в цепях передатчика и приёмника из - случайного характера изменения параметров их элементов. Во - вторых, в среде передачи на сигнал всегда воздействуют случайные помехи, превращая его в случайный на входе приёмника. В то же время во многих случаях реальный сигнал с известной степенью точности можно рассматривать как детерминированный, что облегчает их анализ.

Все сигналы (детерминированные и случайные) делятся на периодические и непериодические.

Периодические сигналы характеризуются свойством повторяемости через некоторый промежуток времени Т, называемый периодом: s(t) = s(t + nT),n= 1,2,3,.... (1.2)

Здесь s(t) - рассматриваемый сигнал; Т - период его повторения; f = 1/Т - частота повторения сигнала.

Если в процессе передачи Т меняется произвольным образом, то сигнал называют непериодическим. Если же период Т повторяется через достаточно большой промежуток времени, то сигнал называют ква- зипериодическим или псевдослучайным.

Сигналы, даже аналоговые, существующие только в одном интервале времени, относятся к импульсным. На рисунке 1.7 приведены некоторые виды перечисленных выше сигналов.

Рис. 1.7, а описывает, например, детерминированный дискретный сигнал с периодом следования прямоугольных импульсов Т и длительностью импульса Т с в соотношении 2: 1 (меандр). Отношение Q = Т/Т с называется скважностью сигнала. Для сигнала рис. 1.7, а она равна 2, а для сигнала рис. 1.7,с - 3. На рисунке 1.7, с показан периодический сигнал с Q = 3. Рисунки 1.7, b и d иллюстрируют случайные и непериодические сигналы соответственно. Если на всех рисунках выделить только один импульс, то получим, соответственно, сигнал импульсный .


Рис. 1.7.

При рассмотрении различных сигналов обычно прибегают к четырём видам их представления:

  • - временному;
  • - спектральному;
  • - корреляционному;
  • - векторному.

Временное представление.

Временное представление основано на рассмотрении сигнала как функции времени. В зависимости от положения сигнала относительно наблюдателя, его функция времени будет, вообще говоря, различной. Сказанное достаточно просто поясняется с помощью диаграммы, изображённой на рис. 1.8.


Рис. 1.8.

Положим, что «наблюдатель» находится в точке, которая характеризуется интервалом наблюдения t4 - ts. Очевидно, что в момент времени tj наблюдается только некоторая точка, отображающая факт наличия сигнала, а о его структуре сказать ничего нельзя. По мере приближения к «наблюдателю» сигнал начинает растягиваться во времени и мы видим какую-то его структуру (интервал времени t2 - На этом интервале структура сигнала соответствует его истинной структуре, а вот частота следования импульсов не будет соответствовать фактической. Таковой она станет только в интервале t 4 - t 5 , когда расположение сигнала будет соответствовать положению «наблюдателя». В этом интервале мы сможем измерить истинные параметры сигнала - его амплитуду, частоту и фазу.

На этом свойстве основывается эффект Доплера, который легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится, и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты звуковых волн.

Если источник сигнала движется по направлению к приёмнику («наблюдателю»), то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

где со 0 - угловая частота, с которой источник испускает волны, с - скорость распространения волн в среде, v - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот.

Математически временное представление сигнала - это разложение сигнала s(t), при котором в качестве базисных (основополагающих) функций используются единичные импульсные функции - дельта-функции. Математическое описание такой функции задается соотношениями

где 8(t) - дельта-функция, отличная от нуля в начале координат (при t = 0).

Для более общего случая, когда дельта-функция отличается от нуля в момент времени t = tj (рис. 1.9), имеем

Рис. 1.9. Дельта-функция

Такая математическая модель соответствует абстрактному импульсу бесконечно малой длительности и безграничной величины. Единственным параметром, правильно отражающим реальный сигнал, является время его действия. С помощью дельта-функции можно выразить значение реального сигнала s(t) в конкретный момент времени tji

Это равенство справедливо для любого текущего момента времени t.

Таким образом, функцию s(t) можно выразить в виде совокупности примыкающих друг к другу импульсов бесконечно малой длительности. Ортогональность совокупности таких импульсов очевидна, так как они не перекрываются во времени.

Подавляющее большинство сигналов, использующихся в современных системах связи имеют вид прямоугольных импульсов. Прямоугольный импульс прямоуголен только в идеальном случае. На самом деле он имеет вид, изображённый на рис. 1.10 .


Рис. 1.10.

На рисунке импульс имеет следующие основные составные части:

  • - участок t r t2 - фронт, т.е. отклонение напряжения от исходного уровня;
  • - участок t2-t3 - вершина импульса;
  • - участок t3-t 4 - срез (задний фронт), т.е. возврат напряжения к исходному уровню.

Параметры импульса:

  • 1. Амплитуда импульса U m - наибольшее отклонение импульса от исходного уровня.
  • 2. Длительность импульса т н (t„). Измеряется на различных уровнях U m . Длительность бывает:
    • - полная, на уровне 0,lU m (т ио);
    • - активная, при которой обычно срабатывает импульсное устройство - на уровне 0,5U m (т иа).
  • 2. Длительность фронта (1ф) - время нарастания напряжения от 0,1 U m до 0,9U m (может быть полной и активной).
  • 3. Длительность среза (t c) - время возвращения напряжения к исходному уровню от 0,9U m до 0,lU m .
  • 4. Спад вершины импульса (AU m). Описывается коэффициентом

спада Величина коэффициента спада колеблется в диапазоне от 0,01 до 0,1.

В качестве дополнительного можно отметить такой параметр как крутизна - скорость нарастания (спада) импульса.

Крутизна фронта определяется как

Крутизна среза определяется как

Определяется крутизна в [В/с]. Прямоугольный импульс обладает бесконечно большой крутизной. Наибольшее применение получили прямоугольные и экспоненциальные видеоимпульсы.

Для передачи информации используются последовательности импульсов - периодические и непериодические. Периодические последовательности используются только для тестирования аппаратуры, а для передачи семантической информации применяются непериодические последовательности. Тем не менее, для рассмотрения основных закономерностей, имеющих место при передаче информации, обратимся к периодическим последовательностям (рис. 1.11).

Рис. 1.11.

Рассмотрим параметры последовательности импульсов.

  • 1. Период следования (повторения) - Т. Т = t„ + t n .
  • 2. Частота следования (повторения) - F. Это есть число импульсов в секунду. Выражение для определения частоты имеет вид: F = 1/Т.
  • 3. Скважность - отношение интервала между импульсами (периода) (скважины) к длительности самого импульса (Q). Q=T/t H . Скважность всегда больше 1 (Q>1).
  • 4. Коэффициент заполнения - величина, обратная скважности (у).

Таким образом, основными параметрами импульсов являются амплитуда, длительность импульса, длительность фронта, длительность среза, спад вершины импульса.

Параметрами последовательности импульсов являются период следования импульсов, частота следования импульсов, скважность, коэффициент заполнения.

Периодический сигнал описывается выражением s(t) = s(t + Т), причём в течение периода Т (ti, t + Т) сигнал описывается формулой

Если в процессе передачи период Т меняется произвольным образом, то сигнал называют непериодическим. Если же период Т повторяется через достаточно большой промежуток времени, то сигнал называют квазипериодическим или псевдослучайным.

Среди множества различных сигналов особое место занимают так называемые тестовые или испытательные сигналы. Основные из них приведены в таблице 1 .

Таблица 1

Испытательные сигналы

Приведенные в таблице 1 сигналы являются функциями времени, но следует отметить, что такие же функции используются и в частотной области, где аргументом будет частота. Любую из функций можно смещать во времени в желаемую область временной плоскости и использовать для описания более сложных сигналов.

Функция включения (единичная функция (функция скачка) или функция Хевисайда), позволяет описать процесс перехода некоторого физического объекта из исходного - «нулевого» в «единичное» состояние, причем этот переход совершается мгновенно. С помощью функции включения удобно описывать, например, разнообразные процессы коммутации в электрических цепях.

При моделировании сигналов и систем значение единичной функции (функции скачка) в точке t = 0 очень часто принимают равным 1, если это не имеет принципиального значения. Эта функция используется также при создании математических моделей сигналов конечной длительности. При умножении любой произвольной функции, в том числе периодической, на прямоугольный импульс, сформированный из двух последовательных функций включения s(t) = o(t) - o(t - Т), из неё «вырезается» участок на интервале 0 - Т, и обнуляются значения функции за пределами этого интервала (следует обратить внимание из аналитической записи этого примера, где «выставлены» эти функции). Произведение произвольного сигнала на функцию включения характеризует начало действия сигнала.

Дельта-функция или функция Дирака по определению дополнительно описывается следующими математическими выражениями:

причем интеграл характеризует тот факт, что эта функция имеет единичную площадь и локализована в конкретной временной точке.

Функция S(t-i) не является дифференцируемой, и имеет размерность, обратную размерности её аргумента, что непосредственно следует из безразмерности результата интегрирования и, в соответствии с примечаниями таблицы, характеризует скорость изменения функции включения. Значение дельта-функции равно нулю везде за исключением точки т, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать амплитудное значение, равное бесконечности, в точке t = т на аналоговой временной шкале, т. е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

При всей своей абстрактности дельта-функция имеет вполне определённый физический смысл. Представим себе импульсный сигнал прямоугольной формы (выразив его функцией из таблицы - это rect- функция, т. е. сигнал s(t) = (1/ти)гесф(1-т)/ти], от англ, rectangle - прямоугольник) длительностью т,„ амплитуда которого равна 1/т,„ а площадь соответственно равна 1.

При уменьшении значения длительности т и импульс, сокращаясь по длительности, сохраняет свою площадь, равную 1, и возрастает по амплитуде. Предел такой операции при т„->0и носит название дельта-импульса. Этот сигнал 5(t-x) сосредоточен в одной координатной точке t=x, конкретное амплитудное значение сигнала не определено, но площадь (интеграл) остается равной 1.

Это не мгновенное значение функции в точке t = т, а именно импульс (импульс силы в механике, импульс тока в электротехнике и т.

п.) - математическая модель короткого действия, значение которого равно 1.

Дельта-функция обладает фильтрующим свойством. Суть его заключается в том, что если дельта-функция 5(t-x) входит под интеграл какой-либо функции в качестве множителя, то результат интегрирования равен значению подынтегральной функции в точке т расположения дельта-функции, т. е.:

Пределы интегрирования в этом выражении можно ограничить ближайшими окрестностями точки т.

При изучении общих свойств сигналов, абстрагируются от их физической природы и назначения, заменяя их математической моделью. Математическая модель - это приближённое описание сигнала в форме, наиболее пригодной для проводимого исследования. Математическое описание всегда отражает лишь отдельные, наиболее важные свойства сигнала, существенные для данного исследования.

Математический аппарат, используемый при анализе сигналов, позволяет проводить исследования без учёта их физической природы.

При практическом анализе сигналов чаще всего применяется представление в виде обобщённого ряда Фурье,

однако эти сигналы должны удовлетворять условию конечности энергии на интервале от t до t2

Так как равенство (1.10) понимается в среднеквадратическом смысле, представление сигнала в виде обобщённого ряда Фурье сводится к выбору системы базисных функций {

В настоящее время широкое применение нашли следующие ортогональные базисные функции - тригонометрические (sinx, cosx), полиномы Чебышева, Эрмита, функции Уолша, Хаара и др.

Коэффициенты с п определяются исходя из минимизации среднеквадратической ошибки а 0 , обусловленной конечным числом слагаемых в правой части выражения (1.10)

где N - число слагаемых, а поскольку базисные функции (р п зависят от времени.

При этом ошибка, обусловленная конечным числом слагаемых в правой части выражения (1.10), является наименьшей по сравнению с другими способами определения коэффициентов с п. Так как а > 0, то всегда имеет место неравенство Г31

Прежде чем приступить к изучению каких – либо явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большему количеству признаков. Предпримем подобную попытку применительно к радиотехническим сигналам и помехам.

Основные понятия, термины и определения в области радиотехнических сигналов устанавливает государственный стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы весьма разнообразны. Их можно классифицировать по целому ряду признаков.

1. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы делятся на одномерные и многомерные . На практике наиболее распространены одномерные сигналы. Они обычно являются функциями времени. Многомерные сигналы состоят из множества одномерных сигналов, и кроме того, отражают свое положение в n- мерном пространстве. Например, сигналы, несущие информацию об изображении какого-либо предмета, природы, человека или животного, являются функциями и времени и положения на плоскости.

2. По особенностям структуры временного представления все радиотехнические сигналы подразделяются на аналоговые , дискретные и цифровые . В лекции №1 уже были рассмотрены их основные особенности и отличия друг от друга.

3. По степени наличия априорной информации все многообразие радиотехнических сигналов принято делить на две основные группы: детерминированные (регулярные) и случайные сигналы. Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны. Примером детерминированного радиотехнического сигнала может служить гармоническое (синусоидальное) колебание, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известно. По сути дела детерминированный сигнал не несет в себе никакой информации и практически все его параметры можно передать по каналу радиосвязи одним или несколькими кодовыми значениями. Другими словами, детерминированные сигналы (сообщения) по существу не содержат в себе информации, и нет смысла их передавать. Они обычно применяются для испытаний систем связи, радиоканалов или отдельных устройств.

Детерминированные сигналы подразделяются на периодические и непериодические (импульсные ). Импульсный сигнал – это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен. Периодические сигналы бывают гармоническими , то есть содержащими только одну гармонику, и полигармоническими , спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы называются полигармоническими.

Случайные сигналы – это сигналы, мгновенные значения которых в любые моменты времени неизвестны и не могут быть предсказаны с вероятностью, равной единице. Как ни парадоксально на первый взгляд, но сигналом несущим полезную информацию, может быть только случайный сигнал. Информация в нем заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. На практике любой радиотехнический сигнал, в котором заложена полезная информация, должен рассматриваться как случайный.

4. В процессе передачи информации сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражается в их названии: сигналы модулированные , демодулированные (детектированные ), кодированные (декодированные ), усиленные , задержанные , дискретизированные , квантованные и др.

5. По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

6. По принадлежности к тому или иному виду систем передачи информации различают телефонные , телеграфные , радиовещательные , телевизионные , радиолокационные , управляющие , измерительные и другие сигналы.

Рассмотрим теперь классификацию радиотехнических помех. Под радиотехнической помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем радиосвязи помеха – это любое случайное воздействие на полезный сигнал, ухудшающее верность воспроизведения передаваемых сообщений. Классификация радиотехнических помех возможна также по ряду признаков.

1. По месту возникновения помехи делят на внешние и внутренние . Основные их виды были уже рассмотрены в лекции №1.

2. В зависимости от характера взаимодействия помехи с сигналом различают аддитивные и мультипликативные помехи. Аддитивной называется помеха, которая суммируется с сигналом. Мультипликативной называется помеха, которая перемножается с сигналом. В реальных каналах связи обычно имеют место и аддитивные, и мультипликативные помехи.

3. По основным свойствам аддитивные помехи можно разделить на три класса: сосредоточенные по спектру (узкополосные помехи), импульсные помехи (сосредоточенные во времени) и флуктуационные помехи (флуктуационные шумы), не ограниченные ни во времени, ни по спектру. Сосредоточенными по спектру называют помехи, основная часть мощности которых находится на отдельных участках диапазона частот, меньших полосы пропускания радиотехнической системы. Импульсной помехой называется регулярная или хаотическая последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы радиотехнических цепей или работающих рядом с ними устройств. Импульсные и сосредоточенные помехи часто называют наводками .

Между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют в единстве, хотя и противоположны по своему действию.

Случайные процессы

Как указывалось выше, отличительная черта случайного сигнала состоит в том, что его мгновенные значения заранее не предсказуемы. Практически все реальные случайные сигналы и помехи представляют собой хаотические функции времени, математическими моделями которых являются случайные процессы, изучаемые в дисциплине статистическая радиотехника. Случайным процессом принято называть случайную функцию аргумента t , где t текущее время. Случайный процесс обозначается прописными буквами греческого алфавита , , . Допустимо и другое обозначение, если оно заранее оговорено. Конкретный вид случайного процесса, который наблюдается во время опыта, например на осциллографе, называется реализацией этого случайного процесса. Вид конкретной реализации x(t) может задаваться определенной функциональной зависимостью аргумента t или графиком.

В зависимости от того, непрерывные или дискретные значения принимают аргумент t и реализация х , различают пять основных видов случайных процессов. Поясним эти виды с указанием примеров.

Непрерывный случайный процесс характеризуется тем, что t и х являются непрерывными величинами (рис. 2.1,а). Таким процессом, например, является шум на выходе радиоприемного устройства.

Дискретный случайный процесс характеризуется тем, что t является непрерывной величиной, а х - дискретной (рис. 2.1,б). Пере­ход от к происходит в любой момент времени. Примером такого процесса является процесс, характеризующий состояние системы массового обслуживания, когда система скачком в произвольные моменты времени t переходит из одного состояния в другое. Другой пример это результат квантования непрерывного процесса только по уровню.

Случайная последовательность характеризуется тем, что t яв­ляется дискретной, а х - непрерывными величинами (рис. 2.1,в). В качестве примера можно указать на временные выборки в конкретные моменты времени из непрерывного процесса.

Дискретная случайная последовательность характеризуется тем, что t и х являются дискретными величинами (рис. 2.1,г). Такой процесс может быть получен в результате квантования по уровню и дискретизации по времени. Такими являются сигналы в цифровых системах связи.

Случайный поток представляет собой последовательность точек, дельта-функций или событий (рис. 2.1, д, ж) в случайные моменты времени. Этот процесс широко применяется в теории надёжности, когда поток неисправностей радиоэлектронной техники рассматривается как случайный процесс.