Понятия информации, сообщения, сигнала. Виды сигналов и их основные характеристики. Что такое сигнал. Виды сигналов Что представляет собой сигнал

Виды сигналов

Сигнал

Сигнал – это физический процесс, некоторая характеристика которого несёт информационный смысл.

Например, световой сигнал (поток света) характеризуется яркостью, цветом, поляризационными свойствами, направлением распространения и др.

Информацию может нести как одна из этих характеристик, так и одновременное сочетание нескольких характеристик.

Сигнал возникает в природе при взаимодействии материальных объектов и несёт в себе информацию об этом взаимодействии. Сигнал способен перемещаться, распространяться в некоторой материальной среде, тем самым, обеспечивая пространственный перенос информации от объекта (источника события) к субъекту (наблюдателю). Материальная среда, в которой распространяется сигнал, называется носителем сигнала .

Сигналы различаются, прежде всего, по своей физической природе . Примеры: световой сигнал, звуковой, электрический, радиосигнал...

В зависимости от порождающего их источника сигналы бывают естественные или искусственные .

Естественные сигналы возникают в силу того, что где-то в живой или неживой природе взаимодействуют материальные объекты. Это естественный процесс, никак не связанный с деятельностью человека. Примеры: свечение Солнца, пение птиц, распространение запаха цветов…

Искусственные сигналы инициируются человеком или возникают в технических системах, созданных человеком. Примеры: электрические сигналы телефонной линии; радиосигналы; сигнальная ракета или костёр; сигнал светофора; сирена пожарной машины...

По форме сигналы бывают аналоговые , дискретные и цифровые .

Аналоговый (или непрерывный) сигнал представляет собой физический процесс, информационная характеристика которого изменяется плавно. Например, плавно изменяющийся электрический сигнал (рис.1). Другие примеры: звуковой сигнал, естественный световой сигнал. Практически все естественные сигналы аналоговые .

Особенностью аналогового сигнала является размытость границы между двумя соседними его значениями. Общее число значений, которыми можно характеризовать аналоговый сигнал, бесконечно велико.

Дискретный сигнал представляет собой физический процесс, информационная характеристика которого изменяется скачкообразно и может принимать только некоторый ограниченный набор значений (рис.2).

Особенность дискретного сигнала – это чёткое разграничение между двумя разными значениями сигнала. Общее число возможных значений, которые может принимать дискретный сигнал, всегда ограничено.

Например, лампа, включенная в электрическую цепь. Лампа может либо гореть, либо не гореть. Если лампа горит, это служит сигналом о том, что в цепи есть ток. Если не горит – тока нет. Промежуточные значения (с какой яркостью горит лампа) здесь не учитываются – значений только два: либо горит, либо не горит.



Другой пример: по телеграфу передаётся некоторое сообщение.

Сообщение передаётся с помощью азбуки Морзе, использующей три разных значения: точка, тире и пробел (пауза). Сигнал, который несёт это сообщение, тоже будет иметь только три разных значения: короткий сигнал, длинный сигнал и отсутствие сигнала. Поскольку количество возможных значений сигнала ограничено – это дискретный сигнал.

Дискретные сигналы, как правило, искусственные (создаются человеком или технической системой).

По видам (типам) сигналов выделяются следующие:

  1. аналоговый
  2. цифровой
  3. дискретный

Аналоговый сигнал

Аналоговый сигнал является естественным. Его можно зафиксировать с помощью различных видов датчиков. Например, датчиками среды (давление, влажность) или механическими датчиками (ускорение, скорость). Аналоговые сигналы в математике описываются непрерывными функциями. Электрическое напряжение описывается с помощью прямой, т.е. является аналоговым.

Цифровой сигнал

Цифровые сигналы являются искусственными, т.е. их можно получить только путем преобразования аналогового электрического сигнала.

Процесс последовательного преобразования непрерывного аналогового сигнала называется дискретизацией. Дискретизация бывает двух видов:

  1. по времени
  2. по амплитуде

Дискретизация по времени обычно называется операцией выборки. А дискретизация по амплитуде сигнала - квантованием по уровню.

В основном цифровые сигналы являются световыми или электрическими импульсами. Цифровой сигнал используют всю данную частоту (полосу пропускания). Этот сигнал все равно остается аналоговым, только после преобразования наделяется численными свойствами. И к нему можно применять численные методы и свойства.

Дискретный сигнал

Дискретный сигнал – это все тот же преобразованный аналоговый сигнал, только он необязательно квантован по уровню.

Это основные сведения о видах (типах) сигналов .

Что такое электрический сигнал и с чем его едят? Давайте обсудим в этой статье.

Сигнал – это что-то такое, что можно передать через пространство и время. Итак, какие условия должны быть, чтоб назвать сигнал “сигналом”?

Во-первых, сигнал должен кем-либо создаваться (генерироваться).

Во-вторых, сигнал должен для кого предназначаться.

В-третьих, кто-то должен принять этот сигнал и сделать для себя какие-либо выводы, то есть правильно трактовать сигнал.

Окунемся в Дикий Запад.

Думаю, не секрет, что индейцы разжигали костер, и дым от костра использовался для передачи сигнала. Значит, в нашем случае костер – генератор сигнала. Итак, первый пункт работает). Для кого же был предназначен дым от костра? Для ковбоев? Конечно же нет! Для своих же индейцев. Значит, работает пункт два. Ну ладно, вы увидели два столба дыма, возвышающихся в небо. Вам это что-то говорит? Кто-то, наверное, жарит шашлыки? Может быть. Но если вы подойдете к этим кострам, то шашлык сделают именно из вас). Для индейцев эти два столба дыма означали, что их отряд благополучно поохотился на ковбоев;-). Ну вот и выполнилось третье правило;-).

Но что же из себя представляет электрический сигнал? Терзают меня смутные сомнения, что где-то здесь замешан электрический ток :-). Чем характеризуется электрический ток? Ну конечно же, напряжением и силой тока . Самое примечательное, что электрический ток очень удобно передавать через пространство с помощью проводов. В этом случае его скорость распространения будет равна скорости света. Хотя и электроны в проводнике движутся со скоростью всего несколько миллиметров в секунду, электрические поле охватывает сразу весь провод со скоростью света! А как вы помните, скорость света равна 300 000 километров в секунду! Поэтому, электрон на другом конце провода практически сразу придет в движение.

Передача электрических сигналов

Итак, для передачи сигнала через пространство мы будем использовать провода. Чуть выше мы разобрали условия возникновения сигнала. Значит, первым делом, нам нужен генератор этих сигналов! То есть это может быть какая-либо батарея или схемка, которая бы генерировала электрический ток. Далее, должен быть кто-то, кто бы принимал этот сигнал. Это может быть какая-нибудь нагрузка, типа лампочки, нагревательного элемента или целой схемы, которая бы принимала этот сигнал. Ну и в-третьих, нагрузка должна как-то среагировать на этот сигнал. Лампочка должна источать свет, нагревательный элемент – греться, а схема исполнять какую-либо функцию.

Как вы поняли из всего выше сказанного, главный козырь сигнала – это его генератор. Итак, как мы уже разобрали, по проводам можно передавать два параметра электрического тока – это напряжение и сила тока . То есть мы можем создать генератор, который бы менял или свое напряжение или силу тока в нагрузке, которая бы цеплялась через провода к этому генератору. В основном в электронике используют именно параметр “напряжение”, так как напряжение легко получить и менять его значение.

Время и электрический сигнал

Как я уже сказал, сигнал передается во времени и в пространстве. То есть время – важный параметр для электрического сигнала. Сейчас нам придется немного попотеть и вспомнить курс математики и физики за среднюю школу. Вспоминаем декартову систему координат. Как вы помните, по вертикали мы откладывали ось Y, по горизонтали Х:

В электронике и электротехнике по Х мы откладываем время, назовем его буквой t, а по вертикали мы отложим напряжение, обозначим его буквой U. В результате наша система координат будет выглядеть вот таким образом:

Прибор, который показывает нам изменение напряжения во времени называется осциллографом , а график этого напряжения называется осциллограммой . Осциллограф может быть :


или аналоговым :


Виды электрических сигналов

Постоянный ток

Какой же электрический сигнал является самым простым сигналом в электронике? Я думаю, это сигнал постоянного тока . А что значит постоянный ток? Это ток, значение напряжения которого не меняется с течением времени.Как же он выглядит на нашем графике? Примерно вот так:

Здесь мы видим сигнал постоянного тока в 3 вольта.

По вертикали у нас напряжение в вольтах, а по горизонтали – ну, скажем, в секундах. Постоянный ток с течением времени всегда имеет одно и то же значение напряжения, поэтому, неважно, в секундах или в часах у нас идет отсчет по времени. Напряжение ни прыгнуло, ни упало. Оно как было 3 Вольта, так и осталось. То есть можно сказать, что сигнал постоянного тока представляет из себя прямую линию, параллельную оси времени t.

Вот так выглядит сигнал постоянного тока на аналоговом осциллографе


Какие же генераторы электрического тока могут выдать такой сигнал постоянного напряжения?

Это, конечно же различные батарейки


аккумуляторы для мобильного телефона


для ноутбука


автомобильные аккумуляторы


и другие химические источники тока.

В лабораторных условиях проще получить постоянное напряжение из переменного . Прибор, который это умеет делать, называется лабораторным блоком питания постоянного напряжения.


Шумовой сигнал или просто шум

А что будет, если напряжение будет принимать хаотическое значение? Получится что-то типа этого:


Такой электрический сигнал называется шумом .

Думаю, некоторые из вас впервые видят осциллограмму шума, но я уверен на 100%, что все слышали звучание этого сигнала;-). Ну-ка нажмите на Play ;-)

Шипение радиоприемника или старого ТВ, не настроенного на станцию или на какой-нибудь канал – это и есть шум;-) Как бы странно это не звучало, но такой сигнал тоже очень часто используется в электронике. Например, можно собрать схемку глушителя частот, который бы гасил все телевизионные и радиоприемники в радиусе километра). То есть генерируем шумовой сигнал, усиливаем его и подаем в эфир;-) В результате глушим всю приемопередающую аппаратуру.

Синусоидальный сигнал

Синусоидальный сигнал – самый любимый сигнал среди электронщиков.

Все любят качаться на качелях?


Здесь мы видим девочку, которая с радостью на них качается. Но предположим, она не знает фишку, что можно раскачаться самой, вовремя сгибая и разгибая ноги. Поэтому, пришел папа девочки и толкнул дочку вперед.

Ниже на графике как раз показан этот случай


Как вы видите, траектория движения девочки во времени получилась очень забавной. Такой график движения носит название “синусоида “. В электронике такой сигнал называют синусоидальным . Вроде бы до боли самый простой график, но вы не поверите, именно на такой простой синусоиде строится вся электроника.

Так как синусоидальный сигнал повторяет свою форму на протяжении всего времени, то его можно назвать периодическим. То есть вы периодически обедаете – периодами – равными отрезками времени. Тут то же самое. Этот сигнал периодически повторяется. Важные параметры периодических сигналов – это амплитуда, период и частота.


Амплитуда (A) – максимальное отклонение напряжения от нуля и до какого-то значения.

Период (T) – время, за которое сигнал снова повторяется. То есть если вы сегодня обедаете в 12:00, завтра тоже в такое же время, в 12:00, и послезавтра тоже в это же самое время, значит ваш обед идет с периодом в 24 часа. Все элементарно и просто;-)

Частота (F) – это просто единичка, поделенная на период, то есть

Измеряется в Герцах. Объясняется как “столько-то колебаний в секунду”. Ну пока для начала хватит;-).

Как я уже сказал, в электронике синусоида играет очень большую роль. Даже не надо далеко ходить. Достаточно сунуть паль… щупы осциллографа в свою домашнюю розетку, и можно уже наблюдать синусоидальный сигнал, частотой в 50 Герц и амплитудой в 310 Вольт.


Прямоугольный сигнал

Очень часто в электронике используется и прямоугольный сигнал:


Прямоугольный сигнал на рисунке ниже, где время паузы и время длительности сигнала равны, называется меандром .


Треугольный сигнал

Близкие друзья синусоидального сигнала – это треугольный сигнал


У треугольного сигнала есть очень близкий кореш – это пилообразный сигнал


Сложный сигнал

В электронике также используются сложные сигналы . Вот, например, один из них (я нарисовал его от балды):


Все эти сигналы относятся к периодическим сигналам , так как для них можно указать период , частоту следования и амплитуду самих сигналов:




Двухполярные сигналы

Для сигналов, которые “пробивают пол”, ну то есть могут иметь отрицательное значение напряжения, типа вот этих сигналов


кроме периода и амплитуды имеют еще один параметр. Называется он размах или двойная амплитуда . На буржуйском языке это звучит как amplitude Peak-to-peak , что в дословном переводе ” амплитуда от пика до пика”.

Вот двойная амплитуда для синусоиды (2А)


а вот для треугольного сигнала:


Чаще всего обозначается как 2А, что говорит нам о том, что это двойная амплитуда сигнала.

Импульсные сигналы

Также существуют сигналы, которые не подчиняются периодическому закону, но тоже играют немаловажную роль в электронике.

Импульсы – это те же самые сигналы, но они не поддаются периодическому закону, и меняют свое значение, в зависимости от ситуации.

Например, вот череда импульсов:


Каждый импульс имеет разную длительность во времени, поэтому мы не можем говорить о какой-то периодичности сигналов.

Звуковой сигнал

Также есть и звуковой сигнал


Хоть он и похож на белый шум, но несет информацию в виде звука. Если такой электрический сигнал подать на динамическую головку, то можно услышать какую-либо запись.

Вывод

В настоящее время электрические сигналы играют очень важную роль в радиоэлектронике. Без них не существовало бы никакой электроники, а тем более цифровой. В настоящее время цифровая электроника достигла своего апогея, благодаря цифровым сигналам и сложной системе кодирования.Скорость передачи данных просто ошеломляющая! Это могут быть гигабайты информации в секунду. А ведь все когда-то начиналось с простого телеграфа…

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Аналоговые и дискретные сигналы

1. Сигнал, непрерывно изменяющийся во времени так, что в любой момент времени можно измерить его значение, называется аналоговым.

2. Сигнал, дискретно изменяющийся во времени так, что его значения определены только в счетные (с определенным шагом) моменты времени, принято называть дискретным.

3. В цепях дискретного времени (с дискретными сигналами) вход и выход всегда имеет общий провод, соединенный с землей. Поэтому его не показывают.

4. Преобразования: аналоговый сигнал дискретный сигнал осуществляют с помощью ключа дискретизатора и ФНЧ.

5. Дискретные сигналы характеризуют скоростью передачи дискретных значений.

Сигнал в виде выборок называют амплитудно импульсным модулированным.

Скорость передачи дискретных значений совпадает с частотой дискретизации.

2. Дискретные и цифровые сигналы

1. Цифровые (двоичные) сигналы являются частным случае дискретных, когда для амплитуды любого импульса допустимы лишь два значения: «0» или «1», соответственно токовой и бестоковой посылки.

2. Переходы дискретный сигнал цифровой сигнал осуществляются с помощью цифро-аналогового преобразователя (ЦАП) и аналогово-цифрового преобразователя (АЦП).

3. АЦП осуществляет преобразование в два приема:

каждое дискретное значение сигнала переводится из десятичной в двоичную систему исчисления;

двоичному числу ставится в соответствие двоичный сигнал, имеющий два положения «0» и «1».

5 = 12 2 + 02 1 + 12 0 101

4. Цифровые сигналы характеризуются скоростью передачи в бит/с.

Бит - минимальное сообщение, означающее выбор одного из двух значений: «0» и «1».

1 байт равен 8 бит.

5. На передачу через ЛЭЦ 1 бит/с обычно требуется 1 Гц полосы частот.

3. Понятие временного разделения каналов

1. Цепь, имеющая несколько входов и выходов и характеризуемая функциональным назначением (усилитель, фильтр и т.д.), называется системой.

2. Система временного разделения каналов основана на придании каждому абоненту своего индивидуального времени работы.

3. A. Индивидуальное время работы означает наличие индивидуальных ключей-дискретизаторов.

Б. Через линию передаются цифровые сигналы.

УУ - управляющее ключами устройство.

В. Для коммутации к АТС подводят входящие и исходящие линии абонентов.

При пространственной коммутации номера входящей и исходящей линий одинаковы, при временной - разные.

ЗУ - задерживающее (на несколько интервалов) устройство.

4. Цифровой фильтр и его элементы

1. В дискретных сигналах информацию несет огибающая импульсов x(n), зависящая от номера отсчета n.

2. Операции над огибающей импульсов осуществляются с помощью устройства, называемого цифровым фильтром.

3. Цифровой фильтр реализуется средствами вычислительной техники и состоит из трех элементов:

сигнал фильтр аналоговый дискретный

4. Синтез цифрового фильтра складывается из трех этапов:

А. Отыскивается аналоговое устройство, осуществляющее нужную операцию над огибающей сигнала.

Б. Импульсная характеристика аналогового устройства дискретизи - руется в виде последовательности импульсов с огибающей g(n).

В. Цифровой фильтр реализуется в виде модели.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия и определения систем передачи дискретных сообщений. Сигнальные созвездия при АФМ и квадратурная АМ. Спектральные характеристики сигналов с АФМ. Модулятор и демодулятор сигналов, помехоустойчивость когерентного приема сигналов с АФМ.

    дипломная работа , добавлен 09.07.2013

    Фильтрация сигналов на фоне помех в современной радиотехнике. Понятие электрического фильтра как цепи, обладающей избирательностью реакции на внешнее воздействие. Классификация фильтров по типу частотных характеристик. Этапы проектирования фильтра.

    курсовая работа , добавлен 23.01.2010

    Принципы проектирования электрического фильтра и усилителя напряжения. Анализ спектра сложного периодического сигнала. Оценка прохождения входного сигнала через радиотехнические устройства. Разработка схем электрического фильтра и усилителя напряжения.

    курсовая работа , добавлен 28.03.2015

    Понятие и функциональные особенности активного фильтра, его внутренняя структура и элементы, предъявляемые требования, частотные характеристики. Определение параметров и порядка фильтра-прототипа, его передаточной функции. Настройка частоты полюса.

    курсовая работа , добавлен 29.12.2013

    презентация , добавлен 19.08.2013

    Определение операторной функции ARC-фильтра. Расчет амплитудного и фазного спектров реакции. Построение графика функции времени реакции цепи. Определение переходной и импульсной функции фильтра. Реакция цепи на непериодический прямоугольный импульс.

    курсовая работа , добавлен 30.08.2012

    Характер и основные причины повреждений в кабельных линиях, порядок и методы их определения: дистанционные, кратковременной дуги, волновые, измерения частичных разрядов. Виды зондирующих сигналов. Помехи импульсной рефлектометрии и борьба с ними.

    контрольная работа , добавлен 20.03.2011

    Назначение фильтрующих цепей в диапазоне СВЧ. Полосовой фильтр из полуволновых разомкнутых резонаторов. Возможные варианты схем фильтра-прототипа. Структура коаксиальной линии. График вероятности безотказной работы полосового фильтра, расчет допусков.

    курсовая работа , добавлен 24.02.2014

    Формула для сигнала при гармонической модуляции. Амплитуда и частота несущего колебания. Компьютерное моделирование ЧМ-сигналов с помощью программного пакета Electronics Workbench. Спектр частотно-модулированного сигнала. Частота модулирующего колебания.

    лабораторная работа , добавлен 04.06.2015

    Общие свойства линейных цепей с постоянными параметрами. Рассмотрение преобразования сигналов линейными цепями в частотной и временной области. Простейшие цепи и их характеристики: фильтры интегрирующего, дифференцирующего и частотно-избирательного типа.

1. Основные понятия и определения. Определение радиоэлектроники. Определение радиотехники. Понятие сигнала. Классификационный анализ сигналов. Классификационный анализ радиотехнических цепей. Классификационный анализ радиоэлектронных систем.

Современная радиоэлектроника – это обобщенное название ряда областей науки и техники, связанных с передачей и преобразованием информации на основе использования и преобразования электромагнитных колебанийи волн радиочастотного диапазона; основными из этих областей являются:

радиотехника, радиофизика и электроника.

Основная задача радиотехники состоит в передаче информации на расстояние с помощью электромагнитных колебаний. В более широком смысле современная радиотехника – область науки и техники, связанная с генерацией, усилением, преобразованием, обработкой, хранением, передачей и приемом электромагнитных колебаний радиочастотного диапазона, используемых для передачи информации на расстояние. Как следует из этого, радиотехника и радиоэлектроника тесно связаны и часто эти термины заменяют друг друга.

Науку, занимающуюся изучением физических основ радиотехники, называют радиофизикой.

1. Понятие сигнала.

Сигналом (от лат. signum - знак) называется физический процесс или явление, несущее сообщение о каком-либо событии, состоянии объекта, либо передающее команды управления, оповещения и т.д. Таким образом, сигнал является материальным носителем сообщения. Таким носителем может служить любой физический процесс (свет, электрическое поле, звуковые колебания и т.п.). В радиоэлектронике изучаются и используются в основном электрические сигналы. Сигналы как физические процессы наблюдаются с помощью различных приборов и устройств (осциллографом, вольтметров, приемников). Любая модель отражает ограниченное число наиболее существенных признаков реального физического сигнала. Несущественные признаки сигнала игнорируются для упрощения математического описания сигналов. Общим требованием к математической модели является максимальное приближение к реальному процессу при минимальной сложности модели. Функции, описывающие сигналы могут принимать вещественные и комплексные значения, поэтому часто говорят о вещественных и комплексных моделях сигналов.

Классификация сигналов. По возм-ти предсказания мгн. значений сигнала в любой момент времени разл-ют:

Детерминированные сигналы, т.е. такие сигналы, для которых мгновенные значения для любого момента времени известны и предсказуемы с вероятностью равной единице;

Случайные сигналы, т.е. такие сигналы, значение которых в любой момент времени невозможно предсказать с вероятностью равной единице.

Все сигналы, несущие информацию являются случайными, поскольку полностью детерминированный сигнал (известный) информации не содержит.

Простейшими примерами детерминированного и случайного сигналов являются напряжения сети и напряжения шума соответственно (см. рис.2.1).

В свою очередь случайные и детерминированные сигналы могут подразделяться на непрерывные или аналоговые сигналы и дискретные сигналы, имеющие несколько разновидностей. Если сигнал можно измерять (наблюдать) в любой момент времени, то его называют аналоговым. Такой сигнал существует в любой момент времени. Дискретные сигналы могут наблюдаться и измеряться в дискретные (отдельные) ограниченные по длительности к моменту появления отрезки времени. К дискретным сигналам относятся импульсные сигналы.

На рисунке показаны два вида импульсов. Видеоимпульс и радиоимпульс. При формировании радиоимпульсов видеоимпульс используется как управляющий (модулирующий) сигнал и в этом случае между ними существует аналитическая связь:

При этом называется огибающей радиоимпульса, а функция- его заполнением.

Импульсы принято характеризовать амплитудой A, длительностью , длительностью фронтаи срезаи при необходимости частотойили периодомповторения.

Импульсные сигналы могут быть самых различных видов. В частности различают импульсные сигналы называемые дискретными (см. рис.2.3).

Эта разновидность сигналов может быть представлена математической моделью в виде счетного множества значений функции - где i = 1, 2, 3, ...., k, отсчитываемых в дискретные моменты времени. Шаг дискретизации сигнала по времени и по амплитуде обычно величина постоянная для данного типа сигнала, т.е. минимальное приращение сигнала

Каждое из значений конечного множества S можно представить в двоичной системе исчисления в виде числа: - 10101;- 11001;- 10111. Такие сигналы называют цифровыми.

Классификация радиосистем и решаемых ими задач

По выполняемым функциям информационные радиосистемы могут быть разделены на следующие классы:

    передачи информации (радиосвязь, радиовещание, телевидение);

    извлечения информации (радиолокация, радионавигация, радиоастрономия, радиоизмерения и т.д.);

    разрушения информации (радиопротиводействие);

    управления различными процессами и объектами (беспилотные летательные аппараты и др.);

    комбинированные.

В системе передачи информации имеется источник информации и ее получатель. В радиосистеме извлечения информации информация как таковая не передается, а извлекается или из собственных сигналов, излученных в направлении на исследуемый объект и отраженных от него, или из сигналов других радиосистем, или из собственного радиоизлучения различных объектов.

Радиосистемы разрушения информации служат для создания помех нормальной работе конкурирующей радиосистемы путем излучения мешающего сигнала, или приема, умышленного искажения и переизлучения сигнала.

В радиосистемах управления решается задача выполнения объектом некоторой команды, посылаемой с пульта управления. Командные сигналы являются информацией для следящего устройства, выполняющего команду.

Основными задачами, решаемыми радиосистемой при приеме информации, являются:

    Обнаружение сигнала на фоне помехи.

    Различение сигналов на фоне помехи.

    Оценка параметров сигнала.

    Воспроизведение сообщения.

Наиболее просто решается первая задача, в которой с заданными вероятностями правильного обнаружения и ложной тревоги следует принять решение о наличии известного сигнала в принятом сообщении. Чем выше уровень задачи, тем сложнее становится схема принимающего устройства.

2. Энергия, мощность, ортогональность и когерентность сигналов. Взаимная энергия сигналов (интеграл похожести). Понятие нормы сигнала.