Ширина энергетического спектра определяется по формуле. Определение активной длительности сигнала и активной ширины его спектра. Скорость убывания спектра вне основной полосы

  • Величина и длительность воздействия тока на тело человека.
  • Виды движения материальных потоков и длительность производственного цикла
  • Випромінювання та поглинання світла атомом. Неперервний і лінійчатий спектри. Спектральний аналіз. Лазер
  • Влияние отражённого сигнала на результаты измерений. Многопутность
  • Время - форма бытия материи, которая выражает длительность существования материальных объектов и последовательность изменений этих объектов в процессе развития.
  • Нам уже ясно, что чем меньше длительность сигнала, тем шире его спектр.

    Это фундаментальное положение теории сигналов можно установить в общем виде на основе преобразования Фурье

    Рассмотрим поведение каждого из интегралов при увеличении Ω.

    В соответствии и леммой Римана, утверждающей, что если функция s(t) абсолютно интегрируема на промежутке то

    Геометрический смысл этого утверждения поясняется рисунком, в верхней части которого изображены некоторый произвольный сигнал s(t) и гармоническое колебание с частотой Ω, а в нижней части – их произведение.

    При достаточно высокой частоте Ω каждая положительная полуволна почти полностью компенсируется ближайшей к ней отрицательной полуволной и суммарная площадь под кривой s(t)cos(Ωt) или s(t)sin (Ωt) близка к нулю. Под достаточно высокой частотой следует понимать частоту Ω=2π/Т, при которой период Т достаточно мал по сравнению с длительностью сигнала s(t).

    Очевидно, что чем короче сигнал, тем меньше и период Т, соответствующий этому условию.

    Иными словами, чем короче сигнал, тем выше граничная частота спектра сигнала. Так как нижняя граница спектра примыкает к нулевой частоте, то общий спектр получается тем шире, чем меньше длительность сигнала. При этом оказывается, что произведение длительности на «техническую» ширину его спектра является величиной, близкой к единице.

    Ранее, мы на качественном уровне давали определение эквивалентной длительности, более строго она может быть определена как

    Причем начало отсчета времени совмещается с серединой импульса, так что выполняется условие

    Аналогично, эквивалентная ширина спектра ΔΩ=2πΔF определяется выражением

    При дополнительном условии

    Уточняющем начало отсчета частоты на оси Ω.

    Если сигнал нормирован таким образом, что его энергия Е равна единице, т.е.

    То выражение для τ и ΔΩ, зависящая от формы сигнала, в любом случае не может быть меньше ½.

    Таким образом, для любого сигнала выполняется условие τ и ΔF≥1/4π.

    В частности, для гауссова импульса, основываясь на ранее полученных результатах, находим

    Используя условие нормировки



    получаем

    Из этого примера видно, что из всех сигналов гауссов импульс обладает наименьшей возможной величиной произведения τ и ΔF.

    Сжатие импульса во времени с целью, например, повышения точности измерения момента его появления, неизбежно сопровождается расширением спектра импульса, что заставляет расширять полосу пропускания измерительного устройства. Аналогично, сжатие спектра импульса, например с целью повышения точности измерения частоты неизбежно сопровождается растяжением сигнала во времени, что требует увеличения промежутка времени наблюдения (измерения). Невозможность одновременно сконцентрировать сигнал в узкой полосе часто и в коротком промежутке времени представляет собой одно из проявлений извествного в физике принципа неопределенности.

    Литература: [Л.1], с 50-51

    [Л.2], с 65-66

    [Л.3], с 24-25

    Для решения практических задач радиотехники крайне важно знать значения длительности и ширины спектра сигнала, а также соотношение между ними. Знание длительности сигнала позволяет решать задачи эффективного использования времени, предоставляемого для передачи сообщений, а знание ширины спектра – эффективного использования диапазона радиочастот.

    Решение указанных задач требует строгого определения понятий «эффективная длительность» и «эффективная ширина спектра». На практике существует большое число подходов к определению длительности. В том случае, когда сигнал ограничен во времени (финишный сигнал), как это имеет место, например, для прямоугольного импульса, определение длительности не встречает затруднений. Иначе обстоит дело, когда теоретически сигнал имеет бесконечную длительность, например, экспоненциальный импульс

    В этом случае в качестве эффективной длительности может быть принят интервал времени , в течение которого значение сигнала . При другом способе в качестве выбирают интервал времени, в течение которого . То же самое можно сказать и в отношении определения эффективной ширины спектра .

    Хотя в дальнейшем, некоторые из этих способов будут использоваться при анализе радиотехнических сигналов и цепей, следует отметить, что выбор способа существенно зависит от формы сигнала и структуры спектра. Так для экспоненциального импульса более предпочтителен первый из указанных способов, а для сигнала колоколообразной формы – второй способ.

    Более универсальным является подход, использующий энергетические критерии. При таком подходе в качестве эффективной длительности и эффективной ширины спектра рассматриваются соответственно интервал времени и диапазон частот, в пределах которых сосредоточена подавляющая часть энергии сигнала

    , (2.52)

    , (2.53)

    где – коэффициент, показывающий, какая часть энергии сосредоточена в интервалах или . Обычно величину выбирают в пределах .

    Применим критерии (2.52) и (2.53) для определения длительности и ширины спектра прямоугольного и экспоненциального импульсов. Для прямоугольного импульса вся энергия сосредоточена в интервале времени или , поэтому его длительность . Что касается эффективной ширины спектра, то установлено, что более 90% энергии импульса сосредоточено в пределах первого лепестка спектра. Если рассматривать односторонний (физический) спектр импульса, то ширина первого лепестка спектра составляет в круговых частотах или в циклических частотах. Отсюда следует, что эффективная ширина спектра прямоугольного импульса равна

    Перейдем к определению и экспоненциального импульса. Полная энергия импульса составляет

    .

    Воспользовавшись (2.52), получим

    .

    Вычислив интеграл в левой части уравнения и решив его, можно прийти к следующему результату

    .

    Спектр экспоненциального импульса найдем, воспользовавшись преобразованием Фурье

    ,

    откуда следует

    .

    Подставляя это выражение в (2.53) и решая уравнение, получим

    .

    Найдем произведение эффективной длительности на эффективную ширину спектра. Для прямоугольного импульса это произведение составляет

    ,

    или для циклических частот

    .

    Для экспоненциального импульса

    Таким образом, произведение эффективной длительности на эффективную ширину спектра одиночного сигнала есть постоянная величина, зависящая только от формы сигнала и величины коэффициента . Это означает, что при уменьшении длительности сигнала его спектр расширяется и наоборот. Этот факт уже отмечался пи рассмотрении свойства (2.46) преобразования Фурье. На практике это означает, что невозможно сформировать короткий сигнал, обладающий узким спектром, что является проявлением физического принципа неопределенности .

    При практических расчетах длительности сигнала и шири­ны его спектрав ряде случаев удобно пользоваться энергетиче­ским критерием. Активную длительность импульсаи активную ширину спектра (или ) определяют как интервал времени и диапазон частот соответственно, внутри которых сосре­доточена подавляющая часть полной энергии Э импульса (напри­мер, 95%). Если сигнал s (t ) задан на интервале времени , то его активная длительность рассчитывается из условия

    В левой части равенства записана энергия сигнала, сосредоточен­ная в интервале времени 0 – (рис. 4.33,а). В правой части равенства – доля (определяемая заданным коэффициентом полной энергии сигнала.

    Исходя из равенства Парсеваля, аналогично рассчиты­вается активная ширина спектра сигнала

    Таким образом, активная ширина спектра сигнала соответствует полосе частот, в пределах которой заключена доля полной энергии сигнала (рис. 4.33, б).

    В случае простых видеоимпульсов (например, прямоугольного, треугольного, косинусоидального), спектр которых сосредоточен в области низких частот, можно считать с достаточной для прак­тики точностью, что

    где, - постоянная величина, зависящая от формы импульса и критерия оценки величини .

    Рис.4.33. Сигнал (а) и его спектр (б)

    Как видно из (4.61), уменьшение длительности импульса неиз­бежно приводит к увеличению ширины его спектра, и наоборот. Пользуясь соотношением (4.61), можно рассчитать полосу частот, занимаемую спектром сигнала в зависимости от его длительности.

    Рис 4.34. Прямоугольный импульс (а) и его спектр (б)

    Для перечисленных выше типов видеоимпульсов зна­чение близко к единице. В частности, если оцени­вать активную ширину спе­ктра прямоугольного им­пульса длительностью(рис. 4.34, а) как полосу частотf = 0 и тем значением частоты, когда спектральная плотность первый раз обращается в нуль (рис. 4.34, б), т. е. когда аргумент спектральной плотности (4.42) прини­мает значение ,то = 1. Следовательно, для пря­моугольного импульса = 1.

    Пользуясь соотношением (4.60), можно показать, что в полосе (0, ) (в первом лепестке) сосредоточено свыше 90% полной энергии сигнала.

      1. Вопросы и задания для самопроверки:

      Из каких тригонометрических функций можно сформировать периодический сигнал?

      Что такое постоянная и основная составляющие, гармоники сигнала?

      Какие формулы ряда Фурье используют для описания периодических сигналов?

      Записать ряд Фурье (4.4) в тригонометрической и комплексных формах, ограничившись третьей гармоникой.

      Что такое спектр амплитуд?

      Периодический сигнал задан рядом Фурье в форме

    Представить этот ряд в тригонометрической форме (4.10).

    Ширина спектра сигнала 1. Величина, характеризующая часть спектра сигнала, содержащего спектральные составляющие, суммарная которых составляет заданную часть полной мощности сигнала

    Употребляется в документе:

    Приложение № 1 к ГОСТ 24375-80

    Телекоммуникационный словарь . 2013 .

    Смотреть что такое "Ширина спектра сигнала" в других словарях:

      ширина спектра сигнала - Величина, характеризующая часть спектра сигнала, содержащего спектральные составляющие, суммарная мощность которых составляет заданную часть полной мощности сигнала. [ГОСТ 24375 80] Тематики телевидение, радиовещание, видео Обобщающие термины… …

      Ширина спектра сигнала - 2. Ширина спектра сигнала Величина, характеризующая часть спектра сигнала, содержащего спектральные составляющие, суммарная мощность которых составляет заданную часть полной мощности сигнала Источник: ГОСТ 24375 80: Радиосвязь. Термины и… …

      ширина спектра (сигнала оптического канала) - 44 ширина спектра (сигнала оптического канала) : Полоса частот или диапазон длин волн, в котором передается основная часть средней мощности оптического излучения сигнала оптического канала Источник: ОСТ 45.190 2001: Системы передачи волоконно… … Словарь-справочник терминов нормативно-технической документации

      ширина спектра выходного сигнала модуля (блока) СВЧ - ширина спектра Δfшир Интервал частот спектра выходного модуля (блока) СВЧ, в котором сосредоточена заданная часть мощности колебаний. [ГОСТ 23221 78] Тематики компоненты техники связи Обобщающие термины модули СВЧ, блоки СВЧ Синонимы ширина … Справочник технического переводчика

      ширина спектра - Полоса частот, в которой сосредоточена основная энергия излучаемого сигнала и находятся частотные составляющие, имеющие максимальные значения. Ширина спектра обычно измеряется по уровню 0,5 (ЗдБ) от максимального значения мощности или по уровню 0 … Справочник технического переводчика

      Ширина спектра выходного сигнала модуля (блока) СВЧ - 20. Ширина спектра выходного сигнала модуля (блока) СВЧ Δfшир