Шумы квантования и способы их уменьшения. Преобразование аналог—цифра. Шумы квантования. Квантовые шумы, как они есть

Квантование сигнала по уровню является главной операцией аналого-цифрового преобразования сигнала и заключается в округлении его мгновенных значений до ближайших разрешенных. При равномерном квантовании, расстояние между уровнями квантования одинаково. При квантовании сигнала возникают ошибки, величина которых случайна и имеет равномерное распределение, не превышая значения половины шага квантования. Сигнал после квантования представляет собой сумму исходного сигнала и сигнала ошибки, который воспринимается как флуктуационный шум.

Защищенность от шумов квантования для наиболее слабых сигналов при равномерном квантовании:

–псофометрический коэффициент, равный для канала ТЧ величине 0,75;

–динамический диапазон сигнала, равный , дБ;

m – число разрядов в двоичном коде.

Таблица 5.2. Исходные данные

Уровни сигнала:

Динамический диапазон сигнала:

Необходимое число разрядов:

–разрядность кода при равномерном квантовании.

Число шагов для равномерного квантования будет:

Вывод: чтобы закодировать равномерным кодом с заданной защищенностью потребуется код с разрядностью .

5.2.2. Шумы неравномерного квантования

В реальных системах ИКМ используется неравномерное квантование. Неравномерное квантование – уменьшение наклона характеристики путем уменьшения величины шагов квантования для малых мгновенных значений сигнала за счет увеличения шагов для больших значений.

При неравномерном кодировании используются 8-ми разрядные коды, т.е. число уровней квантования равно 256.

Сжатие динамического диапазона осуществляется при помощи А - или m - характеристики компрессирования. В нашем случае используется характеристика компрессии , которая описывается следующим выражением:

Рис. 5.2.2. Характеристика компрессии

В ЦСП применяются сегментные неравномерные характеристики квантования, т.к. они достаточно просто реализуются на цифровой основе. Характеристика симметрична относительно 0, положительна и отрицательная ее ветви состоят из 8-ми сегментов, каждый сегмент поделен на 16 одинаковых шагов (внутри каждого сегмента квантование равномерное).

Сегменты аппроксимируют гладкую кривую характеристики компрессирования типа А. в нулевом и в первом сегменте шаг минимален, а в каждом последующем сегменте величина шага удваивается по отношению к предыдущему.

Выражение для защищенности от шумов квантования в двух первых сегментах будет иметь вид:

Для 2–7 сегментов:

где i - номер сегмента.

Начало графика – наклонная прямая – соответствует нулевому и первому сегментам. Это зона равномерного квантования, поэтому защищенность возрастает пропорционально увеличению уровня сигнала. При переходе ко второму сегменту защищенность скачком уменьшается на 6 дБ. При достижении верхней границы 7 сегмента наступает зона перегрузки.

Погрешности преобразования входного сигнала из аналоговой формы в цифровую возникает при квантовании сигнала на конечное, ограниченное число уровней. Чтобы выявить характер этой погрешности приведем структурную схему (рис.1.10) и выделим из нее два устройства: аналогово-цифровой преобразователь (АЦП) и цифро-аналоговый преобразователь (ЦАП).

Рис.1.10. Функциональная схема преобразования аналог-цифра и обратно – цифра-аналог

Рассмотрим сначала совместную работу этих устройств без учета цифрового фильтра при подаче на вход АЦП постоянного напряжения различного уровня u 1 (рис. 1.11, а).

Рис. 1.11 Преобразование аналог-цифра и цифра-аналог (а), характеристика квантования (б) и ошибка квантования (в)

Основным параметром АЦП является число разрядов, используемых для кодирования входного напряжения. При двоичном коде число разрядов определяется числом триггеров регистра, каждый из которых может находиться в одном из двух состояний: с нулевым или ненулевым напряжением на выходе. Одному из этих состояний условно приписывается нуль, а другому - единица. При числе двоичных элементов r на выходе АЦП получается комбинация (кодовое число) из r символов, каждый из которых может принимать одно из двух значений (нуль или единица).

Число возможных различных комбинаций L= 2 r и определяет число дискретных уровней, на которое может быть разбит диапазон изменения входного напряжения.

В ЦАП осуществляется обратное преобразование. Каждой комбинации нулей и единиц, поступающих на вход ЦАП, соответствует определенный дискретный уровень выходного напряжения. В результате при равномерном шаге квантования А зависимость u 2 от u 1 приобретает вид ломаной линии, показанной на рис. 1.11, б.

Устройство, обладающее подобной характеристикой, должно рассматриваться как нелинейное, а разность u 2 -u 1 =q - как ошибка, погрешность квантования. Видно, что наибольшая ошибка, по абсолютной величине не превышающая Δ/2, с возрастанием u 2 остается неизменной (рис. 1.11, в).

Предположим, что входное колебание s(t) является гармоническим (рис. 1.12, а). Колебание s вы x (t) приобретает ступенчатую форму, отличающуюся от входного колебания s (t) (рис. 1.12, б, тонкая линия), а ошибка квантования принимает вид функции

представленной на рис. 1.12, в.

Рис 1.12. Сигнал на входе (а) и выходе (б) квантующего устройства; помеха квантования

При изменении в широких пределах амплитуды и частоты гармонического колебания s(t) изменяется только частота следования зубцов: форма их остается близкой к треугольной при неизменной амплитуде Δ/2. Функцию q (t) можно назвать помехой или шумом квантования. Нетрудно вычислить среднюю мощность шума квантования. При допущении треугольной формы зубцов (рис. 1.11, в) с амплитудой Δ/2 средняя длительность одного зубца мощность равна (1/3) (Δ/2) 2 = Δ 2 /12. Так как эта величина не зависит от длительности зубца, можно считать, что средняя мощность шума квантования


Этот результат, выведенный для гармонического сигнала, можно распространить и на любой другой сигнал, в том числе и случайный. Отличие лишь в том, что функция q (t) будет случайным процессом из-за случайной длительности зубцов.

Нетрудно вычислить и отношение сигнал/помеха при квантовании. При высоте ступени Δ и общем числе ступеней, укладывающихся в пределах характеристики АЦП, равном L, амплитуда гармонического сигнала не должна превышать величины LΔ/2, а средняя мощность сигнала - величины 1/2(LΔ/2) 2 (во избежание ограничения сигнала). Следовательно, отношение сигнал/помеха при квантовании гармонического колебания

Так как число уровней L связано с числом двоичных разрядов r соотношением L = 2 r , то последнее выражение можно представить в виде

Это соотношение можно рассматривать как частный случай общего выражения

где K пф - пик фактор сигнала, т. е. отношение максимального значения к среднеквадратическому.

При гармоническом колебании , что и приводит к выражению (1.26); при случайном сигнале с нормальным законом распределения K пф может быть принят 2,5-3. В этом случае , a среднеквадратическое напряжение сигнала не должно превышать ~LΔ/6.

Физический смысл выражения (1.27) очевиден: с увеличением числа разрядов r очень быстро возрастает число дискретных уровней, приходящихся на заданный диапазон изменения s(t), и, следовательно, снижается перепад Δ двух соседних уровней.

При грубой оценке превышения сигнала над шумом квантования исходят из соотношения или, в децибелах:

В современных АЦП число разрядов достигает десяти и более. При этом величина , характеризующая динамический дапазон АЦП, равна примерно 60 д Б (6 д Б на один разряд).

Другой важной характеристикой шума квантования является его спектральная характеристика. При гармоническом колебании на входе АЦП помеха квантования является периодической функцией времени. Спектр ее является линейчатым, содержащим только частоты, кратные частоте входного колебания. Из-за зубчатой формы функции q (t) (см. рис. 1.12, в) спектр шума содержит высшие гармоники.

При входном воздействии типа случайного процесса с дисперсией и со среднеквадратической шириной спектра f SCK статистические характеристика шума квантования зависят не только от характеристик исходного процесса s(t), но и от соотношения между и Δ. В частности, при ширина f q CK спектра шума квантования W q (ω) во много раз больше ширины f S CK спектра процесса s (t).

Введем в рассмотрение дискретизацию входного сигнала. На рис. 1.13 представлены одна из реализаций случайного сигнала s(t) и совокупность выборок, взятых с шагом Т. В АЦП каждая выборка преобразуется в цифровой код.

В зависимости от типа аналого-цифрового преобразования могут возникать из-за округления (до определённого разряда) сигнала или усечения (отбрасывания младших разрядов) сигнала.

Математическое описание

Модель

Шум квантования можно представить как аддитивный дискретный сигнал e(nT), учитывающий ошибки квантования. Если d(nT) - входной сигнал квантователя, а F[\,] - его передаточная функция , то имеем следующую линейную модель шума квантования:

e(nT) = F - d(nT)

Линейная модель используется для аналитического исследования свойств шума квантования.

Детерминированные оценки

Детерминированные оценки позволяют определить абсолютные границы шума квантования в случае равномерного квантования:

|max| = \frac{1}{m} 2^{-b} = \frac{1}{m} Q,

где b - число разрядов квантования (сигнала e(nT)), Q - шаг квантования m = 2 - при округлении m = 1 - при усечении.

Вероятностные оценки

Вероятностные оценки основаны на представлении ошибок квантования (сигнала e(nT) ) как случайного шумоподобного процесса. Допущения, вводимые относительно шума квантования:

  • Последовательность e(nT) является стационарным случайным процессом
  • Последовательность e(nT) не коррелирована с квантуемым сигналом d(nT)
  • Любые два отсчёта последовательности e(nT) не коррелированы, то есть шум квантования является процессом типа «белый шум ».
  • Распределение вероятности ошибок квантования является равномерным по диапазону ошибок квантования.
  • M_e = -0,5Q
  • D_e = Q^2/12

См. также

Напишите отзыв о статье "Шум квантования"

Литература

  • Гольденберг Л. М., Матюшкин Б. Д. Цифровая обработка сигналов - М .: Радио и связь, 1985.

Ссылки

  • (англ.)

Отрывок, характеризующий Шум квантования

Княжна Марья поняла все.
Но она все таки надеялась и спросила словами, в которые она не верила:
– Но как его рана? Вообще в каком он положении?
– Вы, вы… увидите, – только могла сказать Наташа.
Они посидели несколько времени внизу подле его комнаты, с тем чтобы перестать плакать и войти к нему с спокойными лицами.
– Как шла вся болезнь? Давно ли ему стало хуже? Когда это случилось? – спрашивала княжна Марья.
Наташа рассказывала, что первое время была опасность от горячечного состояния и от страданий, но в Троице это прошло, и доктор боялся одного – антонова огня. Но и эта опасность миновалась. Когда приехали в Ярославль, рана стала гноиться (Наташа знала все, что касалось нагноения и т. п.), и доктор говорил, что нагноение может пойти правильно. Сделалась лихорадка. Доктор говорил, что лихорадка эта не так опасна.
– Но два дня тому назад, – начала Наташа, – вдруг это сделалось… – Она удержала рыданья. – Я не знаю отчего, но вы увидите, какой он стал.
– Ослабел? похудел?.. – спрашивала княжна.
– Нет, не то, но хуже. Вы увидите. Ах, Мари, Мари, он слишком хорош, он не может, не может жить… потому что…

Когда Наташа привычным движением отворила его дверь, пропуская вперед себя княжну, княжна Марья чувствовала уже в горле своем готовые рыданья. Сколько она ни готовилась, ни старалась успокоиться, она знала, что не в силах будет без слез увидать его.
Княжна Марья понимала то, что разумела Наташа словами: сним случилось это два дня тому назад. Она понимала, что это означало то, что он вдруг смягчился, и что смягчение, умиление эти были признаками смерти. Она, подходя к двери, уже видела в воображении своем то лицо Андрюши, которое она знала с детства, нежное, кроткое, умиленное, которое так редко бывало у него и потому так сильно всегда на нее действовало. Она знала, что он скажет ей тихие, нежные слова, как те, которые сказал ей отец перед смертью, и что она не вынесет этого и разрыдается над ним. Но, рано ли, поздно ли, это должно было быть, и она вошла в комнату. Рыдания все ближе и ближе подступали ей к горлу, в то время как она своими близорукими глазами яснее и яснее различала его форму и отыскивала его черты, и вот она увидала его лицо и встретилась с ним взглядом.

Эффекты конечной разрядности цифровых фильтров

При анализе ЛДС предполагалось, что сигналы дискретизируются только по времени и дискретные отсчеты и коэффициенты фильтров представлялись с неограниченной точностью. Однако в реальных или цифровых системах точность вычислений ограничена и зависит от числа разрядов используемых устройств: АЦП, регистров, сумматоров, умножителей. Это обстоятельство приводит к следующим эффектам:

Шум квантования при аналого-цифровом преобразовании;

Округление результатов промежуточных вычислений;

Искажения частотных характеристик из-за квантования коэффициентов цифровых фильтров;

Переполнение разрядной сетки в процессе вычислений;

Предельные циклы малого уровня.

Шум квантования

Под шумами квантования понимают случайные ошибки между дискретными во времени отсчетами сигналов и их цифровым представлением с ограниченной разрядностью.

Соседние отсчеты шумов квантования предполагаются некоррелированными между собой. И шум квантования является «белым».

Плотность вероятности шума квантования соответствует равномерному закону распределения:

, (2.1)

где - интервал квантования по уровню.

Дисперсия шумов квантования определяется законом распределения:

. (2.2)

Если максимальное значение квантованного сигнала равно , то интервал квантования равен:

,

где - число разрядов цифрового устройства.

Спектральная плотность мощности шумов квантования определяется выражением:

,

где DТ – интервал дискретизации.

Например, коэффициент усиления приемного устройства до входа АЦП выбирается таким образом, чтобы уровень тепловых приемного устройства превышал спектральную плотность шумов квантования.

Вклад входных шумов квантования в выходной сигнал цифрового фильтра определяется выражением:

.

Соответственно, дисперсия выходного шума квантования:

Литература

Маркович И.И. Цифровая обработка сигналов в системах и устройствах: монография / И.И. Маркович; Южный федеральный университет. – Ростов н/Д: Издательство Южного федерального университета, 2012. – 236 с.

Основы цифровой обработки сигналов: учебное пособие / Ю.А. Брюханов, А.А. Приоров, В.И. Джиган, В.В. Хрящев; Яросл. гос. ун-т им. П.Г. Демидова. - Ярославль: ЯрГУ, 2013. – 344 с. (с. 152)

Карташов В.Г. Основы теории дискретных сигналов и цифровых фильтров. – М.: Высш. школа, 1982. – 109. (с. 86)

Основным аспектом расчета и разработки инженерных проектов является необходимость использования аналитических характеристик качества функционирования систем. Только при наличии таких характеристик система может быть объективно оценена и ее стоимость эффективно сопоставлена со стоимостью альтернативных разработок. Одной из характеристик, наобходимой для инженеров телефонной связи, является качество речи, доставляемой слушателю. Измерения качества речи усложняются из-за субъективных свойств речи, которые воспринимаются типовым слушателем. Одна из особенностей субъективного восприятия шумов или искажений в речевом сигнале связана с частотным составом, или спектром мешающих воздействий в сочетании с уровнем их мощности. Эти эффекты влияния шумов в зависимости от частоты были рассмотрены в гл.1 при введении понятий взвешивания при помощи С-контура и псофометрического взвешивания.

Последовательные ошибки квантования в ИКМ-кодере в общем случае предполагаются распределенными по случайному закону и не коррелированными друг с другом. Таким образом, совокупный эффект ошибок квантования в системах с ИКМ можно рассматривать как аддитивные шумы, имеющие субъективное воздействие, которое аналогично воздействию белого шума с ограниченной полосой. На рис. 3.9 представлена зависимость ошибок кванования от амплитуды сигнала для кодера с равномерными шагами квантования. Отметим, что если сигнал успевает измениться по амплитуде на несколько шагов квантования, ошибки квантования становятся независимыми. Если сигнал дискретизируется с частотой, намного превышающей f s , то последовательные дискреты будут часто приходиться на одни и те же шаги, что приведет к потере независимости ошибок квантования.

Ошибки, или шум квантования, возникающие при преобразовании аналогово сигнала в цифровую форму, обычно выражаются в виде средней мощности шума по отношению к средней мощности сигнала. В соответствии с этим отношение сигнал-шум квантования можно определить как

ОСШК=E{x 2 (t)}/E{ 2 }, (3.1)

где E{. } – математическое ожидание, или среднее значение,x(t) – аналоговый входной сигнал,y(t) – декодированный выходной сигнал.

При определении среднего значения шума квантования необходимо сделать три замечания.

    Ошибка y(t) –x(t) ограничена по амплитуде значениемq/2, гдеq– шаг квантования. (Декодированные выходные дискреты располагаются точно посредине шага квантования.)

    Можно предположить, что значения дискретов с равной вероятностью могут попадать в любую точку в пределах шага квантования (предполегается равномерная плотность вероятности, равная 1/q).

    Предполагается, что амплитуды сигнала ограничены рабочим диапазоном кодера. Если значение дискрета превышает границу наивысшего шага квантования, то возникают искажения, вызванные перегрузкой.

Если для удобства предположим, что нагрузочный резистор имеет сопротивление 1 Ом, то средняя мощность шума квантования (вычислена в приложении А) определяется выражением:

Мощность шума квантования = q 2 /12. (3.2)

Если все шаги квантования имеют равные значения (равномерное квантование) и шум квантования не зависит от значений дискретов, то отношение сигнал-шум квантования (в децибелах) определяется как

ОСШК = 10lg = 10,8 + 20lg(v/q), (3.3)

где v– среднее квадратическое значение амплитуды входного сигнала. В частности, для синусоидального входного сигнала отношение сигнал-шум квантования (в децибелах) при равномерном квантовании

ОСШК = 10lg[(А 2 /2)/(q 2 /12)] = 7,78 + 20lg(А/q), (3.4)

где А – амплитуда синусоиды.

Пример 3.1 Синусоидальный сигнал с амплитудой 1 В следует преобразовать в цифровую форму таким образом, чтобы получить отношение сигнал-шум квантования не менее 30 дБ. Сколько потребуется одинаковых шагов квантования и сколько потребуется разрядов для кодирования каждого дискрета?

Решение. С помощью формулы (3.4) определяем максимальный размер шага квантованияq=10 – (30 – 7,78) / 20 = 0,078B.

Таким образом, потребуется 13 шагов квантования для каждой полярности сигнала (общее число шагов квантования 26). Число разрядов, необходимых для кодирования каждого дискрета, определяется как n=log 2 26 = 4,75 разрядов на дискрет.

При измерениях мощности шума квантования спектральные составляющие часто взвешивают тем же способом, что и шумы в аналоговых каналах. К сожалению, измерения взвешенных шумов не всегда отражают подлинное качество восприятия речи, прошедшей кодер (декодер). Если спектральное распределение шумов квантования более или менее повторяет спектральное распределение сигнала речи, эти шумы значительно менее заметны, чем шумы, некоррелированные с речью . С другой стороны, если процесс квантования создает энергию на тональных частотах, отличных от тех, которые содержатся в конкретных звуках, эти искажения становятся более заметными.

Высококачественные ИКМ-кодеры создают шум квантования, который равномерно распределен в диапазоне ТЧ и не зависит от кодируемого сигнала. В этом случае отношение сигнал-шум квантования (3.4) является хорошей мерой качества ИКМ-преобразования. В некоторых видах кодеров, рассматриваемых далее (в особенности в вокодерах), знание мощности шума квантования не приносит большой пользы. В описаны другие характеристики качества речи, прошедшей через кодер, которые лучше определяют восприятие речи слушателем.