Спектральная плотность. Примеры определения спектральной плотности сигналов Определение спектральной плотности мощности

Ниже приводится краткое описание некоторых сигналов и опре­деляются их спектральные плотности. При определении спектраль­ных плотностей сигналов, удовлетворяющих условию абсолютной интегрируемости, пользуемся непосредственно формулой (4.41).

Спектральные плотности ряда сигналов приведены в табл. 4.2.

1) Импульс прямоугольной формы (табл. 4.2, поз. 4). Колебание, изобра­женное на рис. (4.28, а), можно записать в виде

Его спектральная плотность

График спектральной плотности (рис. 4.28, а) построен на основе прове­данного ранее анализа спектра периодической последовательности однополярных, прямоугольных импульсов (4.14). Как видно из (рис. 4.28, б), функция обра­щается в нуль при значениях аргумента = n , где п - 1, 2, 3, ... - лю­бое целое число. При этом угловые частоты равны = .

Рис. 4.28. Импульс прямоугольной формы (а) и его спектральная плотность (б)

Спектральная плотность импульса при численно равна его площади, т.еG (0)=A . Это положение справедливо для импульса s (t ) произвольной формы. Действительно, полагая в общем выражении (4.41) = 0, получим

т. е. площадь импульса s (t ).

Таблица 4.3.

Сигнал s (t )

Спектральная плотность

При растягивании импульса расстояние между нулями функциисокращается, т. е. происходитсжатие спектра. Значение при этом возра­стает. Наоборот, при сжатии импульса происходит расширение его спектра а значение уменьшается. На (рис. 4.29, а, б) приведены графики амплитудного и фазового испектров прямоугольного импульса.

Рис. 4.29. Графики амплитудного (а) Рис. 4.30. Импульс прямоугольной формы, и фазового (б) спектров сдвинутый на время

При сдвиге импульса вправо (за­паздывание) на время (рис. 4.30) фазовый спектр изменяется на величи­ну, определяемую аргументом множителяexp() (табл. 4.2, поз. 9). Результирующий фазовый спектр запаздывающего импульса изо­бражен на рис. 4.29, б пунктирной ли­нией.

2) Дельта-функция (табл. 4.3, поз. 9). Спектральную плотность – функции находим по формуле (4.41), используя фильтрующее свойствоδ -функции:

Таким образом, амплитудный спектр равномерный и определяется пло­щадьюδ -функции [= 1], а фазовый спектр равен нулю [= 0].

Обратным преобразованием Фурье от функции = 1 пользуются как одним из определенийδ -функции:

Пользуясь свойством временного сдвига (табл. 4.2, поз. 9), определяем спект­ральную плотность функции , запаздывающей на время относительно:

Амплитудный и фазовый спектры функции показаны в табл. 4.3, поз. 10. Обратное преобразование Фурье от функции имеет вид

3) Гармоническое колебание (табл. 4.3, поз. 12). Гармони­ческое колебание не является абсолютно интегрируемым сигналом. Тем не ме­нее для определения его спектральной плотностиприменяют прямое пре­образование Фурье, записывая формулу (4.41) в виде:

Тогда с учетом (4.47) получаем

δ(ω) – дельта-функции, смещенные по оси частот на частоту , соответственно вправо и влево относительно. Как видно из (4.48), спектральная плотность гармонического колебания с конечной амплитудой принимает бесконечно боль­шое значение на дискретных частотахи.

Выполняя аналогичные преобразования, можно получить спектральную плотность колебания (табл. 4.3, поз. 13)

4) Функция вида (табл. 4.3, поз. 11)

Спектральная плотность сигнала в виде постоянного уровня А определяется по формуле (4.48), положив = 0:

5) Единичная функция (или единичный скачок) (табл. 4.3, поз. 8). Функция не является абсолютно интегрируемой. Если представить как предел экспоненциального импульса , т. е.

то спектральную плотность функцииможно определить как предел спектральной плотности экспоненциального импульса (табл. 4.3, поз. 1) при :

Припервое слагаемое в правой части этого выражения равно нулю на всех частотах, кроме= 0, где оно обращается в бесконечность, а площадь под функцией равна постоянной величине

Поэтому пределом первого слагаемого можно считать функцию . Преде­лом второго слагаемого является функция. Окончательно получим

Наличие двух слагаемых в выражении (4.51) согласуется с представлением функции в виде 1/2+1/2sign(t ). Постоянной составляющей 1/2 со­гласно (4.50) соответствует спектральная плотность , а нечетной функции - мнимое значение спектральной плотности .

При анализе воздействия единичного скачка на цепи, передаточная функция которых при = 0 равна нулю (т. е. на цепи, не пропускающие по­стоянный ток), в формуле (4.51) можно учитывать только второе слагаемое, представляя спектральную плотность единичного скачка в виде

6) Комплексный экспоненциальный сигнал (табл. 4.3, поз. 16). Если представить функциюв виде

то на основании линейности преобразования Фурье и с учетом выражений (4.48) и (4.49) спектральная плотность комплексного экспоненциального сигнала

Следовательно, комплексный сигнал обладает несимметричным спект­ром, представленным одной дельта-функцией, смещенной на частотувправо относительно.

7) Произвольная периодическая функция. Представим произвольную перио­дическую функцию (рис. 4.31, а) комплексным рядом Фурье

где - частота следования импульсов.

Коэффициенты ряда Фурье

выражаются через значения спектральной плотности одиночного импуль­са s (t ) на частотах (n =0, ±1, ±2, ...). Подставляя (4.55) в (4.54) и поль­зуясь соотношением (4.53), определяем спектральную плотность перио­дической функции:

Согласно (4.56) спектральная плотность произвольной периодической функции имеет вид последовательности-функций, смещенных друг от­носительно друга, на частоту (рис. 4.31, б). Коэффициенты при δ -функциях изменяются в соответствии со спектральной плотностьюодиночного им­пульсаs (t ) (пунктирная кривая на рис. 4.31,б).

8) Периодическая последовательность δ-функций (табл. 4.3, поз. 17). Спект­ральная плотность периодической последовательности –функций

определяется по формуле (4.56) как частный случай спектральной плотности периодической функции при = 1:

Рис.4.31. Произвольная последовательность импульсов (а) и её спектральная плотность (б)

Рис. 4.32. Радиосигнал (а), спектральные плотности радиосигнала (в) и его огибающей (б)

и имеет вид периодической последовательности δ -функций, умноженных на ко­эффициент .

9) Радиосигнал с прямоугольной огибающей. Радиосигнал, представленный на (рис. 4.32,а), можно записать как

Согласно поз. 11 табл.4.2 спектральная плотность радиосигнала полу­чается путем сдвига спектральной плотностипрямоугольной огибающей по оси частот на вправо и влево с уменьшением ординат в два раза, т. е.

Это выражение получается из (4.42) путем замены частоты на частоты– сдвиг вправо и- сдвиг влево. Преобразование спектра огибающейпоказано на (рис. 4.32, б, в).

Примеры расчета спектров непериодических сигналов приведены так же в .

Формальное определение

Пусть - сигнал, рассматриваемый на промежутке времени . Тогда энергия сигнала на данном интервале равна:

= = = ,

где - спектральная функция сигнала. При , средняя мощность (дисперсия)

.

Спектральная плотность мощности (функция плотности спектра мощности).

Спектр плотности мощности сигнала сохраняет информацию только об амплитудах спектральных составляющих. Информация о фазе теряется. Поэтому все сигналы с одинаковым спектром амплитуд и различными спектрами фаз имеют одинаковые спектры плотности мощности.

Методы оценки

Оценка СПМ может выполняться методом преобразования Фурье , предполагающего получение спектра в области частот посредством быстрого преобразования Фурье (БПФ). До изобретения алгоритмов БПФ этот метод из-за громоздкости прямого вычисления дискретного преобразования Фурье (ДПФ) практически не использовался. Предпочтение отдавалось другим методам, в частности, методу корреляционной функции (Блэкмена-Тьюки) и периодограммному методу.

См. также

Литература

  • Цифровая обработка сигналов: Справочник. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. - М.: Радио и связь, .
  • Прикладной анализ временных рядов. Основные методы. Отнес Р., Эноксон Л. - М.: Мир, .

Wikimedia Foundation . 2010 .

  • Спектральная серия
  • Спектральные серии водорода

Смотреть что такое "Спектральная плотность мощности" в других словарях:

    Спектральная плотность мощности шума прибора СВЧ - 221. Спектральная плотность мощности шума прибора СВЧ Спектральная плотность мощности шума Noise spectral power density Pш Мощность шума прибора СВЧ в полосе 1 Гц Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины,… …

    Спектральная плотность мощности шумового диода - 140. Спектральная плотность мощности шумового диода G Отношение среднего квадратического значения мощности шумового диода к заданному диапазону частот Источник: ГОСТ 25529 82: Диоды полупроводниковые. Термины, определения и буквенные обозначения… … Словарь-справочник терминов нормативно-технической документации

    спектральная плотность мощности шума - spektrinis triukšmo galios tankis statusas T sritis radioelektronika atitikmenys: angl. noise spectral power density vok. Spektralleistungsdichte des Rauschens, f rus. спектральная плотность мощности шума, f pranc. densité spectrale de puissance… … Radioelektronikos terminų žodynas

    Spektrinis spinduliuotės galios tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Pasirinktosios spektro dalies vienetinio dažnio, bangos ilgio (ar kito su jais susijusio dydžio) intervalo vidutinė spinduliuotės galios vertė.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    спектральная плотность мощности излучения - spektrinis spinduliuotės galios tankis statusas T sritis fizika atitikmenys: angl. radiation power spectral density vok. spektrale Strahlungsleistungsdichte, f rus. спектральная плотность мощности излучения, f pranc. densité spectrale de… … Fizikos terminų žodynas

    относительная спектральная плотность мощности шума прибора СВЧ - Ндп. энергетический спектр шума энергетический спектр флуктуаций спектральная плотность шума ΔPш Отношение спектральной плотности мощности шума прибора СВЧ к выходной мощности в полосе 1 Гц. [ГОСТ 23769 79] Недопустимые, нерекомендуемые… … Справочник технического переводчика

    Относительная спектральная плотность мощности шума прибора СВЧ - 222. Относительная спектральная плотность мощности шума прибора СВЧ Ндп. Энергетический спектр шума Энергетический спектр флуктуации Спектральная плотность шума Relative noise spectral power density ΔPш Отношение спектральной плотности мощности… … Словарь-справочник терминов нормативно-технической документации

    Спектральная плотность - В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье. Если процесс имеет… … Википедия

    Спектральная плотность излучения - характеристика спектра излучения, равная отношению интенсивности (плотности потока) излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению.… … Википедия

    Спектральная плотность энергии (мощности) лазерного излучения - 5. Спектральная плотность энергии (мощности) лазерного излучения* Спектральная плотность энергии (мощности) СПЭ (СПМ) Wλ, Wv, Pλ, Pv Источник … Словарь-справочник терминов нормативно-технической документации

Оценка спектральной плотности мощности представляет известную проблему для случайных процессов. Примерами случайных процессов может служить шум, а также сигналы, несущие информацию. Обычно требуется найти статистически устойчивую оценку. Анализ сигналов подробно рассматривается в курсе «Цифровая обработка сигналов» . Начальные сведения изложены в .

Для сигналов с известными статистическими характеристиками спектральный состав может быть определен по конечному интервалу этого сигнала. При неизвестности статистических характеристик сигнала по отрезку сигнала можно получить только оценку его спектра. Разные методы использую различные допущения, и поэтому дают различные оценки.

При выборе оценки исходят из того, что в общем случае анализируемый сигнал представляет собой случайный процесс. И требуется выбрать несмещенную оценку, обладающую малой дисперсией, позволяющую усреднить спектр сигнала. Смещением называют разницу между средним значением оценки и истинным значением величины. Несмещенной оценкой называют оценку с нулевым смещением. Оценка с малой дисперсией хорошо локализует искомые величины, т.е. плотность вероятности сконцентрирована около среднего значения. Желательно иметь состоятельную оценку, т.е. оценку, которая при увеличении размера выборки стремится к истинному значению (смещение и дисперсия стремятся к нулю). Различают оценки параметрические, использующие только информацию о самом сигнале и непараметрические, использующие статистическую модель случайного сигнала, и осуществляющие подбор параметров этой модели.

При оценках случайных процессов распространено использование корреляционных функций.

Для эргодичного процесса возможно определение статистических параметров процесса путем усреднения по одной реализации.

Для стационарного случайного процесса корреляционная функция R x (t) зависит от интервала времени, для которого она определяется. Эта величина характеризует связь между значениями x(t), разделенными промежутком t. Чем медленнее убывает R(t), тем больше промежуток, в течение которого наблюдается статистическая связь между значениями случайного процесса.

где - математическое ожидание x(t).

Соотношение между корреляционной функцией R(t) и спектральной плотностью мощности W(w) для случайного процесса определяется теоремой Винера-Хинчина

Для дискретных процессов теорема Винера-Хинчина устанавливает связь между спектром дискретного случайного процесса W(w) и его корреляционной функции R x (n)

W(w)= R x (n)·exp(-j·w·n·T)

Для оценки энергии сигнала во временной и частотной областях используется равенство Парсеваля



Одним из распространенных способов получения оценки спектральной плотности является применение метода периодограмм.

Периодограмма (Periodogram) .В этом методе производится дискретное преобразование Фурье для сигнала x(n), заданного в дискретных точках выборки длиной N отсчетов и его статистическое усреднение. Фактическое вычисление спектра X(k), выполняется только в конечном количестве частотных точек N. Применяется быстрое преобразование Фурье (FFT). Вычисляется спектральная плотность мощности, приходящаяся на один отсчет выборки:

P xx (X k)=|X(k)| 2 /N, X(k)= , k=0,1,…,N-1.

Для получения статистически устойчивой оценки, имеющиеся данные разбивают на перекрывающиеся выборки, с последующим усреднением спектров, полученных по каждой выборке. Задается число отсчетов на выборку N и сдвиг начала каждой последующей выборки относительно начала предыдущей N t . Чем меньше число отсчетов в выборке, тем больше выборок и меньшая дисперсия у оценок. Но поскольку длина выборки N связана с частотным разрешением (2.4), то уменьшение длины выборки ведет к уменьшению частотного разрешения.

Таким образом, сигнал просматривается через окно, а данные, не попадающие в окно, принимаются равными нулю. Конечный сигнал x(n) состоящий из N отсчетов, обычно представляют как результат умножения бесконечного по времени сигнала (n) на прямоугольное окно с конечной длиной w R (n):

x(n) = (n) ∙w R (n),

а непрерывный спектр X N (f) наблюдаемых сигналов x(n) определится как свертка Фурье-образов X(f), W R (f) бесконечного по времени сигнала (n) ∙и окна w R (n)



X N (f)=X(f)*W R (f)=

Спектр непрерывного прямоугольного окна (rect) имеет форму интегрального синуса sinc(x)=sin(x)/x. Он содержит главный «лепесток» и несколько боковых, из которых самый большой приблизительно на 13 dB ниже основного пика (см. рис.15).

Фурье-образ (спектр) дискретной последовательности, получаемой N-точечной дискретизацией непрерывного прямоугольного окна, показан на рис.32. Он может быть вычислен суммированием смещенных интегральных синусов (2.9), в результате получается ядро Дирихле

Рис. 32. Спектр дискретного прямоугольного окна

В то время как сигнал с бесконечной длиной сконцентрирует его мощность точно в дискретной частоте f k , прямоугольная выборка сигнала имеет распределенный спектр мощности. Чем короче выборка, тем более распределенный спектр.

При спектральном анализе производится взвешивание данных с помощью оконных функций, чем добиваются уменьшения влияния боковых «лепестков» на спектральные оценки.

Чтобы обнаружить две гармоники f 1 и f 2 с близкими частотами, необходимо, чтобы для временного окна T ширина главного «лепестка» Df -3 ≈ Df L =0 =1/Т, определяемая на значении -3дБ, была меньше разности искомых частот

Df=f 1 -f 2 > Df -3

Ширина временного окна Т связана с частотой дискретизацией f s и числом отсчетов выборки формулой (2.4).

Инструментальные средства гармонического анализа . Для исследования сигналов очень удобно применение пакета MATLAB, в частности, его приложения (Toolbox) Signal Processing.

Модифицированные периодограммы используют непрямоугольные оконные функции, уменьшающие эффект Гиббса. Примером может служить использование окна Хэмминга (Hamming). Но при этом одновременно происходит примерно вдвое увеличение ширины главного лепестка спектрограммы. Несколько более оптимизировано окно Кайзера (Kaiser). Увеличение ширины главных лепестков при создании фильтров нижних частот ведет к увеличению переходной полосы (между полосами пропускания и задержания).

Оценочная функция Уэлча (Welch) . Метод состоит из деления последовательных данных времени в сегменты (возможно с перекрытием), далее обрабатывается каждый сегмент, а затем оценивают спектр путем усреднения результатов обработки сегментов. Для улучшения оценки могут использоваться непрямоугольные оконные функции, например окно Хэмминга. Увеличение числа сегментов уменьшает дисперсию, но при этом уменьшается разрешение метода по частоте. Метод дает неплохие результаты при малом превышении полезного сигнала над шумом и достаточно часто используется на практике.

На рис.33 приведены оценки гармонического состава для данных, содержащих узкополосые полезные сигналы и белый шум, при различных выборках (N=100, N=67), и использовании различных методов.

Рис. 33. Оценка гармоник сигнала для 1024 точечного FFT-преобразования

Параметрические методы используют авторегрессионные модели (AR). В методах строятся модели фильтров и с их помощью оценивают спектры сигналов. Все методы при наличии шума в сигнале дают смещенные оценки. Предназначены методы для обработки сигналов имеющих гармонические составляющие на фоне шума. Порядок метода (фильтра) задается в два раза больше, чем число гармоник, присутствующих в сигнале. Предложено несколько параметрических методов .

Метод Берга (Burg) дает высокую разрешающую способность по частоте для коротких выборок. При большом порядке фильтра спектральные пики расщепляются. Положение спектральных пиков зависит от начальных фаз гармонических.

Ковариационный (covariance) метод позволяет оценить спектр сигнала, содержащего сумму гармонических компонентов.

Метод Юла-Уоркера (Yule-Walker) дает хорошие результаты на длинных выборках и не рекомендуется для коротких выборок.

Корреляционные методы . Методы MISIC (Multiple Signal Classification) и EV (eigenvectors) выдают результаты в форме псевдоспектра. В основе методов лежит анализ векторов корреляционной матрицы сигнала. Эти методы дают несколько лучшее разрешение по частоте, чем автокорреляционные методы.

Наиболее важной характеристикой стационарных случайных процессов является спектральная плотность мощности, описывающая распределение мощности шума по частотному спектру. Рассмотрим стационарный случайный процесс, который может быть представлен беспорядочной последовательностью импульсов напряжения или тока, следующих друг за другом через случайные интервалы времени. Процесс со случайной последовательностью импульсов является непериодическим. Тем не менее, можно говорить о спектре такого процесса, понимая в данном случае под спектром распределение мощности по частотам.

Для описания шумов вводят понятие спектральной плотности мощности (СПМ) шума, называемой также в общем случае спектральной плотностью (СП) шума,которая определяется соотношением:

где P (f ) - усредненная по времени мощность шума в полосе частотf на частоте измеренияf .

Как следует из соотношения (2.10), СП шума имеет размерность Вт/Гц. В общем случае СП является функцией частоты. Зависимость СП шума от частоты называют энергетическим спектром , который несет информацию о динамических характеристиках системы.

Если случайный процесс эргодический, то можно находить энергетический спектр такого процесса по его единственной реализации, что широко используется на практике..

При рассмотрении спектральных характеристик стационарного случайного процесса часто оказывается необходимым пользоваться понятием ширины спектра шума. Площадь под кривой энергетического спектра случайного процесса, отнесенную к СП шума на некоторой характерной частоте f 0 , называютэффективной шириной спектра , которая определяется по формуле:

(2.11)

Эту величину можно трактовать как ширину равномерного энергетического спектра случайного процесса в полосе
, эквивалентного по средней мощности рассматриваемому процессу.

Мощность шума P , заключенная в полосе частотf 1 …f 2 , равна

(2.12)

Если СП шума в полосе частот f 1 ...f 2 постоянна и равнаS 0 , тогда для мощности шума в данной полосе частот имеем:
гдеf =f 2 -f 1 – полоса частот, пропускаемая схемой или измерительным прибором.

Важным случаем стационарного случайного процесса является белый шум, для которого спектральная плотность не зависит от частоты в широком диапазоне частот (теоретически – в бесконечном диапазоне частот). Энергетический спектр белого шума в диапазоне частот -∞ < f < +∞ дается выражением:

= 2S 0 = const, (2.13)

Модель белого шума описывает случайный процесс без памяти (без последействия). Белый шумвозникает в системах с большим числом простых однородных элементов и характеризуется распределением амплитуды флуктуаций по нормальному закону. Свойства белого шума определяются статистикой независимых одиночных событий (например, тепловым движением носителей заряда в проводнике или полупроводнике). Вместе с тем истинный белый шум с бесконечной полосой частот не существует, поскольку он имеет бесконечную мощность.

На рис. 2.3. приведена типичная осциллограмма белого шума (зависимость мгновенных значений напряжения от времени) (рис. 2.3а) и функция распределения вероятности мгновенных величин напряжения e ,которая является нормальным распределением (рис. 2.3б). Заштрихованная площадь под кривой соответствует вероятности появления мгновенных величин напряженияe , превышающих значениеe 1 .

Рис. 2.3. Типичная осциллограмма белого шума (а) и функция распределения плотности вероятности мгновенных величин амплитуды напряжения шума (б).

На практике при оценке величины шума какого-либо элемента или п/п прибора обычно измеряют среднеквадратичное шумовое напряжение в единицах В 2 или среднеквадратичный токв единицах А 2 . При этом СП шума выражают в единицах В 2 /Гц или А 2 /Гц, а спектральные плотности флуктуаций напряженияS u (f ) или токаS I (f ) вычисляются по следующим формулам:

(2.14)

где
и – усредненные по времени шумовое напряжение и ток в полосе частотf соответственно. Черта сверху означает усреднение по времени.

В практических задачах при рассмотрении флуктуаций различных физических величин вводят понятие обобщенной спектральной плотности флуктуаций. При этом СП флуктуаций, например, для сопротивления R выражается в единицах Ом 2 /Гц; флуктуации магнитной индукции измеряются в единицах Тл 2 /Гц, а флуктуации частоты автогенератора – в единицах Гц 2 /Гц = Гц.

При сравнении уровней шума в линейных двухполюсниках одного и того же типа удобно пользоваться относительной спектральной плотностью шума, которая определяется как

=
, (2.15)

где u – падение постоянного напряжения на линейном двухполюснике.

Как видно из выражения (2.15), относительная спектральная плотность шума S (f ) выражается в единицах Гц -1 .

Под энергией сигнала иЦ) понимают величину

Если сигнал имеет конечную длительность Т, т.е. не равен нулю на отрезке времени [-Т/ 2, Т/ 2], то его энергия

Запишем выражение для энергии сигнала, используя формулу (2.15):

где

Полученное равенство называется равенством Парсеваля. Оно определяет энергию сигнала через временную функцию или спектральную плотность энергии, которая равна |5(/0))| 2 . Спектральная плотность энергии называется также энергетическим спектром.

Рассмотрим сигнал, существующий на ограниченном интервале времени. К такому сигналу применимо равенство Парсеваля. Следовательно,

Разделим левую и правую части равенства на интервал времени, равный Г, и устремим этот интервал к бесконечности:

С увеличением Т энергия незатухающих сигналов возрастает,

однако отношение может стремиться к определенному пределу. Этот предел называется спектральной плотностью мощности С(со). Размерность спектральной плотности мощности: [В 2 Дц].

Автокорреляционная функция

Автокорреляционная функция сигнала и (?) определяется следующим интегральным выражением:

где т - аргумент, определяющий функцию Я(х) и имеющий размерность времени; и(? + т) - исходный сигнал, сдвинутый во времени на величину -т.

Автокорреляционная функция имеет следующие свойства.

1. Значение автокорреляционной функции при сдвиге т = О равно энергии сигнала Е:

2. Автокорреляционная функция при сдвигах т Ф 0 меньше энергии сигнала:

3. Автокорреляционная функция является четной функцией, т.е.

В справедливости свойств 2 и 3 убедимся на примере.

Пример 2.6. Вычислить автокорреляционные функции сигналов: видеосигнала, представленного на рис. 2.7, я, и радиосигнала с теми же амплитудой и длительностью. Несущая частота радиосигнала равна щ, а начальная фаза равна 0.

Решение. Первую задачу решим графическим способом. Автокорреляционная функция определяется интегралом от произведения функции и (?) и ее смещенной во времени копии. Смещение видеосигнала найдем из уравнения? + т = 0. График функции м(? + т) приведен на рис. 2.7, б. Площадь, определяемая графиком произведения м(?)м(? + т) (рис. 2.7, в), равна

Функция Д(т) определяется уравнением прямой (рис. 2.7, г). Функция имеет максимум, если значение аргумента т = 0, и равна 0, если т = т и. Для других значений аргумента /?(т)

Чтобы убедиться в справедливости свойства 3, аналогично вычислим функцию для отрицательных значений т:

Рис. 2.7.

видеоимпульса:

а - прямоугольный видеоимпульс; б - задержанный во времени прямоугольный импульс; в - произведение импульсов; г - автокорреляционная функция

Окончательное выражение для автокорреляционной функции

Функция приведена на рис. 2.7, г и имеет треугольный вид.

Вычислим автокорреляционную функцию радиосигнала, расположив его симметрично относительно вертикальной оси. Радиосигнал:

Подставляя значения сигнала и его сдвинутой копии в формулу для автокорреляционной функции /?(т), получим

Выражение для автокорреляционной функции радиоимпульса состоит из двух слагаемых. Первое из них определяется произведением треугольной функции и гармонического сигнала. На выходе согласованного фильтра это слагаемое реализуется в виде ромбовидного радиоимпульса. Второе слагаемое определяется произведением треугольной функции и функций (втд^/лг, расположенных в точках т = +т и. Значения функций (втх)/:*:, которые оказывают заметное влияние на второе слагаемое автокорреляционной функции, весьма быстро убывают при изменении аргумента т от -т и до оо и от т и до -°о. Решив уравнение

можно найти интервалы задержки, в пределах которых значения функций (втлс)/;*; еще влияют на поведение функции /?(т). Для положительных значений задержки

где 7о - период гармонического сигнала.

Аналогично находится интервал для отрицательных значений задержки.

Поскольку влияние второго слагаемого автокорреляционной функции ограничивается весьма малыми (по сравнению с длительностью радиоимпульсов т и) интервалами 7о/2, в пределах которых значения треугольной функции весьма малы, то вторым слагаемым автокорреляционной функции радиоимпульса можно пренебречь.

Выявим связь автокорреляционной функции #(т) со спектральной плотностью энергии сигнала |5(/со)| 2 . Для этого выразим сдвинутый во времени сигнал и(1ь + т) через его спектральную плотность 5(/со):

Подставим данное выражение в выражение (2.21). В результате получим

Нетрудно убедиться также в справедливости равенства

Разделим обе части равенства (2.23) на интервал времени Т и устремим величину Т к бесконечности:

С учетом формулы (2.20) перепишем полученное выражение:

где
- предел отношения автокорреляционной функции ограниченного во времени сигнала к значению этого времени и при стремлении его к бесконечности. Если этот предел существует, то он определяется обратным преобразованием Фурье от спектральной плотности мощности сигнала.

Обобщением понятия «автокорреляционная функция» является взаимно корреляционная функция, которая представляет собой скалярное произведение двух сигналов:

Рассмотрим основные свойства взаимно корреляционной функции.

1. Перестановка сомножителей под знаком интеграла изменяет знак аргумента взаимно корреляционной функции:

В приведенных преобразованиях использована замена t + т = х.

  • 2. Взаимно корреляционная функция, в отличие от автокорреляционной функции, не является четной относительно аргумента т.
  • 3. Взаимно корреляционная функция определяется обратным преобразованием Фурье от произведения спектральных плотностей сигналов u(t), v(t) :

Эта формула может быть выведена аналогично формуле (2.22).

Взаимно корреляционная функция между периодически повторяющимся сигналом и непериодическим

сигналом v(t ) = Uq(?)

где R(t) - автокорреляционная функция непериодического сигнала u 0 (t).

Полученное выражение равно сумме двух интегралов. При сдвиге, равном нулю, первый интеграл равен нулю, а второй равен энергии сигнала. При сдвиге, равном периоду сигнала, первый интеграл равен энергии сигнала, а второй равен нулю. Каждое значение функции при других сдвигах равно сумме значений автокорреляционных функций непериодического сигнала, смещенных относительно друг друга на один период. Кроме того, взаимно корреляционная функция является периодической функцией, удовлетворяющей уравнению

Взаимно корреляционная функция Я ил> (т) между сигналом u(t ) и сигналом

равна - длительность сигнала v(t).

Действительно, вследствие того что период сигнала u(t ) равен Т и

взаимно корреляционная функция где

Вычисляя предел функции (2п + 1)7? м Мо (т) при п -> определим выражение для автокорреляционной функции периодического сигнала:

Размерность функции: [В 2 /Гц].

Значения функции при нулевом сдвиге и других сдвигах, для которых Лц Мо (т) Ф 0, равны бесконечности. По этой причине использование последнего выражения в качестве характеристики периодического сигнала теряет смысл.

Разделим последнее выражение на интервал, равный (2п + 1 )Т. В результате получим функцию


так как вследствие периодичности функции - т + Т) = - т).

Полученная формула определяет функцию В(т) как предел отношения автокорреляционной функции сигнала, существующего в интервале времени (2п + 1 )Т, к этому интервалу и стремлении его к бесконечности. Этот предел для периодически повторяющегося сигнала называется автокорреляционной функцией периодического сигнала. Размерность этой функции: [В 2 ].

Прямое преобразование Фурье одного периода автокорреляционной функции периодического сигнала определяет спектральную плотность мощности, которая является непрерывной функцией частоты. По этой плотности, используя формулу (2.17), можно найти спектральную плотность мощности периодической автокорреляционной функции сигнала , которая определяется для дискретных значений частот:

где 0)1 = 2п/Т.

Если автокорреляционная функция записана в виде ряда Фурье в тригонометрической форме, то выражение для ее спектральной плотности

Пример 2.7. Вычислить периодическую автокорреляционную функцию сигнала и(ф) = А бш СИ. По найденной функции, ограниченной одним периодом, определить спектральную плотность мощности.

Решение. Подставляя в выражение (2.26) заданный сигнал, получим выражение для периодической автокорреляционной функции:

Полученное выражение подставим в формулу (2.24) и найдем спектральную плотность мощности:

Пример 2.8. Для периодической нормированной автокорреляционной функции шумоподобного сигнала (М-последовательности с периодом N = 1023) вычислить спектральную плотность мощности. (Периодическая функция для последовательности меньшей длины (IV= 15) приведена на рис. 3.39.)

Решение. Для сравнительно большого периода ЛГ = 1023 значения автокорреляционной функции в интервале Т - То > т > То, где То - длительность импульса шумоподобной последовательности, примем равными нулю. В этом случае автокорреляционная функция определяется периодически повторяющейся с периодом Т последовательностью треугольных импульсов. Основание каждого треугольника равно 2то, а его высота равна 1. Уравнение, определяющее автокорреляционную функцию в пределах одного периода, равно В(т) = 1 - |т|/хо- Учитывая четность этой функции, определим коэффициенты ряда Фурье:

При вычислении интеграла использована формула

Подставляя вычисленные коэффициенты в формулу (2.27), ползшим

Спектральная плотность мощности периодической автокорреляционной функции равна взвешенной сумме бесконечно большого числа дельтафункций. Весовые множители определяются квадратом функции (этх)/:»:, умноженной на постоянный коэффициент 2я(то/Т).

Корреляционные функции цифровых сигналов связаны с корреляционными функциями последовательностей символов. Для кодовой последовательности (см. § 1.3) конечного числа N

двоичных символов автокорреляционная функция записывается в виде

где - двоичные символы, равные 0 или 1, или символы, равные -1, 1; д = О, 1, 2, ..., N - .

Последовательности символов могут быть как детерминированными, так и случайными. При передаче информации характерным свойством последовательности символов является их случайность. Значения автокорреляционной функции (при сдвигах, нс равных нулю), вычисленные по заранее записанной случайной последовательности конечной длины, также являются случайными.

Автокорреляционные функции детерминированных последовательностей, которые используются для синхронизации, а также в качестве носителей дискретных сообщений, являются детерминированными функциями.

Сигналы, построенные с использованием кодов или их кодовых последовательностей, называются кодированными сигналами.

Большинство свойств автокорреляционной функции кодовой последовательности совпадает с рассмотренными выше свойствами автокорреляционной функции сигнала.

При пулевом сдвиге автокорреляционная функция кодовой последовательности достигает максимума, который равен

Если символы равны -1, 1, то г(0) = N.

Значения автокорреляционной функции при других сдвигах меньше г(0).

Автокорреляционная функция кодовой последовательности является четной функцией.

Обобщением автокорреляционной функции является взаимно корреляционная функция. Для кодовых последовательностей одинаковой длины эта функция

где 2 } 0 6/, - символы соответственно первой и второй последовательности.

Многие свойства функции г 12 (д) совпадают со свойствами взаимно корреляционной функции рассмотренных выше сигналов. Если функция г^(д), I Ф для любой пары кода при сдвиге д = О равна нулю, то такие коды называются ортогональными. Краткое описание некоторых используемых в системах связи кодов приведено в приложениях 2-4.

Взаимно корреляционная функция между кодовой последовательностью и периодически повторяющейся той же последовательностью называется периодической автокорреляционной функцией кодовой последовательности. Выражение для функции следует из выражений (2.25), (2.26):

где г(д) - непериодическая автокорреляционная функция кодовой последовательности; д - значение сдвига между последовательностями.

Подставим в полученную формулу выражения автокорреляционных функций:

где а/г, а^+ц - элементы кодовой последовательности.

Периодическая автокорреляционная функция кодовой последовательности равна взаимно корреляционной функции, вычисленной для кодовой последовательности и циклически сдвинутых символов этой последовательности. Циклически сдвинутые кодовые последовательности, полученные по исходной последовательности а 0 = а 0 ,а { ,а 2 , ..., а м _ ь приведены ниже. Кодовая последовательность а { получена в результате сдвига исходной последовательности а 0 па один символ вправо и переноса последнего символа а дм в начало сдвинутой последовательности. Остальные последовательности получены аналогично:

Пример 2.9. Вычислить автокорреляционную и периодическую автокорреляционную функцию кодированного сигнала (рис. 2.8, а)

где и 0 (О - прямоугольный импульс с амплитудой А и длительностью т и.

Этот сигнал построен из прямоугольных импульсов, знак которых определяется весовыми коэффициентами: а 0 = ,а. = 1, а 2 = -1, а их число N = 3. Длительность сигнала равна Зт и.

Решение. Подставляя выражение для сигнала в формулу (2.21), получим

Произведем замену переменной t - кт н на х:

Обозначим: & - т = - и заменим дискретные переменные &, т на переменные к, ц. В результате получим

График автокорреляционной функции для заданного сигнала показан на рис. 2.8, б. Эта функция зависит от автокорреляционной функции /? 0 (т) прямоугольного импульса и значений автокорреляционной функции г(

Рис. 2.8. Автокорреляционная функция кодированного сигнала: а - кодированный сигнал; 6 - автокорреляционная функция сигнала; в - автокорреляционная функция периодического сигнала

Вычислим периодическую автокорреляционную функцию, используя рассчитанную выше автокорреляционную функцию, полученные значения автокорреляционной функции кодовой последовательности и формулу (2.28).

Периодическая автокорреляционная функция

Подставим заданное значение N = 3 в полученную формулу:

С учетом значений автокорреляционной функции кодовой последовательности К+З) = 0, г(+ 2) = -1, г(+1) = О, КО) = 3 запишем окончательное выражение для одного периода периодической автокорреляционной функции сигнала:

График функции приведен на рис. 2.8, в.